ABSTRACT
Summarization is the way towards lessening the content of a text file to make it brief that holds all the critical purposes in the content of original text file. In the process of extractive summarization, one extracts only those sentences which are the most relevant sentences in the text document and that conveys the moral of the content.The extractive summarization techniques usually revolve around the idea of discovering most relevant and frequent keywords and then extract the sentences based on those keywords. Manual extraction or explanation of relevant keywords are a dreary procedure overflowing with errors including loads of manual exertion and time. In this paper, we proposed a hybrid approach to extract keyword automatically for multi-document text summarization in e-newspaper articles. The performance of the proposed approach is compared with three additional keyword extraction techniques namely, term frequency-inverse document frequency (TF-IDF), term frequency-adaptive inverse document frequency (TF-AIDF), and a number of false alarm (NFA) for automatic keyword extraction and summarization in e-newspapers articles for better analysis. Finally, we showed that our proposed techniques had been outperformed over other techniques for automatic keyword extraction and summarization.