
Available onlinewww.ejaet.com

European Journal of Advances in Engineering and Technology, 2022, 9(9):52-55

Research Article ISSN: 2394-658X

52

Wave-Based Approach for CPU Latency Optimization in

Encoding

Apoorva Reddy Proddutoori

San Diego, CA

Email id–apoorvaproddutoori@gmail.com

ABSTRACT

Low latency is the modest requirement with the rise in the technology. Faster operating times of the I/O latency of

CPU is mainly required for OS processing and the operation of the cores accounts for the majority proportion. The

following paper proposes reduction of the generated overheads and improving the prediction of data latency using

wave-based approach. Further, understanding of the CNN granularity is utilized to granularize the layers and

decompose the latency based on layer level. Regardless of the overhead, this paper proposes the work in lowering

the overall CPU latency. Based on this concept a novel framework is developed for encoding the latency analysis

to build the prediction structure. Furthermore, the low latency design objective is to maintain low penalty on

performance. Moreover, DVFS decomposition technique is implemented in parallel to minimize the workload

decomposition.

Keywords: Latency, CNN, DVFS, workload, performance monitor.

INTRODUCTION

The evolution of societal requirements led to rise in the demand for low latency high performance CPU. A general

framework for encoding latency interleaves a multiprocessor encoder motivating the workload decomposition as

independent as possible. Multi-view prediction structure can be generated using the decomposition into

customizing encoding architecture. Given the target latency, the multi-view prediction structure models the

latency encoder to meet the desired latency, under the assumption that various predictions are unbounded. Hence,

a prediction structure with number of processors can figuratively propose low latency delay for the model. The

results achieved in this model generated using wave-based are proven to be accurate for multi-view processor

encoding the number of processors and attain the minimum desired latency while maintaining the battery power

consumption by CPU.

Further, low power design is the vital requirement for high ends CPU systems cooling and packaging costs and

low reliability often tied with implications of on-chip power dissipation. The workload of a task is often

represented by the number of CPU clock cycles required to complete the task and is given in advance for a hard

real-time activity or predicted during the execution of a soft real-time activity. such as multimedia processing. In

both cases, the issue of workload distribution according to processor- and memory-related instructions is often not

considered. Remember that main memory is asynchronous to the CPU and often has its own clock. Now that the

execution time of a task is governed by memory usage time, the processor speed can be slowed down, but this has

little effect on the overall execution time of the task. However, this can result in significant CPU power savings.

The study focuses on the unpredictability of data arrival times on CPUs. It aims to reduce fixed costs and

bottlenecks associated with CPUs to enable a wider range of applications to benefit from CPU acceleration. Also,

introduces important contributions including the DVFS technique for power saving by dynamically distributing

workload on- and off-chip, efficient calculation of on-chip computation time ratios, a timing model for access

overhead, and the implementation of DVFS policy for energy savings in various applications. Hardware-based

energy saving measures are demonstrated on a popular platform.

Proddutoori AR Euro. J. Adv. Engg. Tech., 2022, 9(9):52-55

__

53

Figure 1: Computer System Basic Flow

RELATED WORK

A. Low Latency Memory

Low latency memory cells are rising to be the demanding storage units with new memory technology. The

advancements of the memory cell using NAND stand library memory units supporting higher capacitance

meaning higher storage is emerging as the newest development. The sequential read throughput of the low

latency NAND memory is remarkably proven to be lower than regular memory cells, mainly highlighting the

read latency.

B. Maintaining the Integrity of the Specifications
The utilization of optimizing compilers will definitely improve the code layout and throughput when

provoked by likely/unlikely hints. Sometimes, the performance is highly impacted based on the placement of

the encoding latency code while compiling, thus making it dependable on the offset instructions of memory

to make potential use of the low latency memory cells.

There are several optimizations in research, such as model architectural search quantization, weight

compression, and graph pruning to run CNNs completely on the edge. On the other hand, there are studies on

using CNNs with resourceconstraining peripherals in their original form. In order to propose an efficient

hardware design for CNN inference on FPGA and CGRA, respectively. However, most edge devices use

CPUs and GPUS in off-the-shelf SoCs for CNN inference.

Most current machine ML frameworks use embedded CPUs instead of GPUs, mainly because the

performance of previously embedded GPUs was insufficient for edge inference. However, embedded GPUs

have seen significant performance improvements since then, but are still nowhere near their non-integrated

counterparts. Therefore, there have been several efforts to synergistically use both CPUs and GPUs in SoC to

perform high-performance edge inference with CNNs pipeline between asymmetric multi-core CPU clusters

to perform CNN inference to improve performance. To propose a CNN inference pipeline between CPU and

GPU to improve performance. But a sliding-line design can only improve performance of inference, not

latency.

C. Memory Controller

Figure 2: Memory Controller Architecture

Memory requests arrive over the link, pass through the L 2 cache, and then enter one of three queues. Requests are

he ld at the head of the specified queue until the trigger conditi on is met. By default, applications have no

triggers, and thes e applications continue through the memory manager norma lly. On the other hand, if the

specified trigger condition is no t met (for example, the CPU is trying to read an empty locati on), the request will

stop at the head of the queue. If the con dition is met by a request that passes through another queue (for example,

a CPU writes to the same location), the origin al request continues. Requests are merged into a single chan nel in

the low latency memory scheduler. Currently, if an update function is select ed, the F/E bits are updated. Apart

from the full/empty bit and the two new intermediate lines, this process is the same as traditional CPU.

Proddutoori AR Euro. J. Adv. Engg. Tech., 2022, 9(9):52-55

__

54

Each of the Measure scheduler lines is entirely requested for the purpose of equipment straightforwardness. The

Measure scheduler checks the trigger conditions (in case indicated) of the demands at the head of each line; as it

were the head of each line is ever watched. On the off chance that the trigger of task isn't fulfilled, the low latency

memory scheduler will stall that ask (and thus all other demands queued behind it within the same line), and it'll at

that point snoop the demands passing through the other lines for an activity which causes the trigger to gotten to

be fulfilled. When this happens, the already blocked ask is at that point discharged. Other lined demands, in case

there are any, can at that point continue as well.

Figure 3: Big-Little CPU Overview

FREQUENCY FOR LOW LATENCY ENCODING

The operating system processing time accounts for a large portion of the total I/O latency for low-latency SSDs.

Since the operating system is processed inside the CPU core and its operating speed strongly depends on its

operating frequency, we first examine the correlation between core frequency and I/O latency using a low latency

SSD as a summary. We measure the average latency of 4K random numbers with or without I/O polling by

running on a single core with the synchronous direct I/O option. Figure 1 shows that the average latency decreases

almost linearly as the core frequency increases, with or without I/O polling. So it is necessary to maximize core

frequency to minimize I/O latency. Since I/O polling greatly reduces I/O latency, we use it in the experiments of

this article unless otherwise noted. Of Programmers write CPU programs so that blocks of threa ds are loaded on

the CPU. Each thread block contains a set of c omputer threads arranged in a one-dimensional, twodimensional, or

three-dimensional grid.

When a compute device becomes available, the CPU hardwa re scheduler blocks each thread block to an available

core. It is hard or difficult for threads in different blocks to communi cate with each other correctly during

execution since the execution order of the threads and their inputs is un known. Before starting each call or data

transfer, the data req uired for its use must be ready. This synchronization occurs at different levels. The most

detailed synchronization occurs b etween instructions in a queue or stream. Each statement in the flow must be

completely completed before the next one ca n be executed. This allows synchronization across the core but is

slow because it takes several CPU cycles to complete API calls. Other chip barriers can also be used to

synchronize power (but not data) within wire blocks.

There are diverse DVFS approaches that make utilize of the asynchrony of memory get to to the CPU clock amid

assignment execution. In compiler-assisted DVFS methods were proposed, in which recurrence is brought down

in memory-bound locale of a program with small execution debasement. DVFS approaches that depend on micro-

architecture or inserted equipment without any help from a compiler or a test system have too been detailed. In a

microarchitecture driven DVFS method was proposed in which cache miss drives the voltage scaling. In IPC

(instruction per cycle) rate of a program execution was utilized to direct the voltage scaling. Reference displayed a

arrangement to select the ideal CPU clock recurrence beneath a settled execution debasement imperative (of say

10%) based on energetic program behavior such as the number of executed informational and memory get to

checks amid the complete execution time by employing a execution checking unit (PMU). In a DVFS procedure

which empowers more exact energy-performance tradeoff utilizing a PMU was displayed in which the ideal CPU

clock recurrence and the comparing least voltage level are chosen based on the proportion of the on-chip

computation time to the off-chip get to time.

Proddutoori AR Euro. J. Adv. Engg. Tech., 2022, 9(9):52-55

__

55

Figure 4: Traditional Data Ingestion Architecture

FUTURE SCOPE

There are variegate ways to approach CPU latency optimizations to achieve low latency with high performance.

PMU has been key importance to validate the throughput of the low latency architecture. Few other methodologies

involve code optimizations, core parallelization, improving the performance of the compiler, reducing the IPC

count and furthermore.

REFERENCES

[1]. Satoshi Imamura, Eiji Yoshida, “Reducing CPU Power Consumption for Low-Latency SSDs”, IEEE

Non-Volatile Memory Systems and Applications Symposium, June 2018

[2]. Ehsan Aghapour, Dolly Sapra, Andy Pimentel, Anuj Pathania, “CPU_GPU Layer-Switched Low Latency

CNN Interference”, 25th Euromicro Conference on Digital System Design, August 2022

[3]. Pablo Carballeira, Julian Cabrera, Antonio Ortega, Fernando Jaureguizar, Narciso Garcia, “A Graph

Based Approach for Latency Modeling and Optimization in Multiview Video Encoding”, IEEE Xplore,

May 2011

[4]. Daniel Lustig, Margaret Martonosi, “Reducing GPU Offload Latency via Fine Grained CPU-GPU

Synchronization”, Princeton Edu, 2020

