
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2022, 9(3):179-181

Research Article ISSN: 2394 - 658X

179

Leveraging Serverless Computing: An In-Depth Review of Azure

Functions and ASP.NET Core Integration

Sachin Samrat Medavarapu

ABSTRACT

Serverless computing has revolutionized the way developers build and deploy applications by abstracting the

underlying infrastructure management. Azure Functions, a leading serverless computing service by Microsoft,

provides a scalable and cost-effective solution for running event-driven code. When integrated with ASP.NET

Core, Azure Functions enables the creation of robust, scalable, and high-performance web applications. This

review paper explores the architecture, benefits, and use cases of Azure Functions and ASP.NET Core

integration. We discuss various methods and best practices for leveraging these technologies and analyze their

performance through real-world examples. The findings highlight the transformative potential of serverless

computing in modern web development.

Keywords: Serverless computing, infrastructure management, Azure Functions, ASP.NET Core integration

__

INTRODUCTION

In the ever-evolving landscape of software development, serverless computing has emerged as a revolutionary

approach, fundamentally altering how developers deploy and manage applications. Unlike traditional server-centric

models, serverless computing abstracts the underlying infrastructure, enabling developers to write and deploy code

without the burdens of server provisioning, scaling, and maintenance. This paradigm shift not only simplifies the

development process but also enhances agility, scalability, and cost-efficiency.

Among the various serverless platforms available, Azure Functions stands out as a robust and flexible option. As

part of Microsoft's Azure cloud ecosystem, Azure Functions provides a comprehensive environment where

developers can execute small pieces of code, known as functions, in response to a wide array of events. These

events range from HTTP requests and database changes to message queue triggers and scheduled tasks. Azure

Functions supports multiple programming languages, including C#, JavaScript, Python, and more, catering to a

diverse developer audience. Furthermore, its seamless integration with other Azure services, such as Azure Cosmos

DB, Azure Storage, and Azure Event Grid, makes it an indispensable tool for building sophisticated, event-driven

applications.

ASP.NET Core, on the other hand, is a powerful, open-source framework designed for building modern web

applications. Known for its high performance, cross-platform capabilities, and rich feature set, ASP.NET Core

empowers developers to create web applications that are both robust and scalable. The framework's modular

architecture and built-in support for dependency injection, middleware, and Razor Pages contribute to its flexibility

and extensibility, making it a preferred choice for many developers.

The integration of Azure Functions with ASP.NET Core represents a harmonious blend of serverless and traditional

web application paradigms. This combination leverages the strengths of both platforms, allowing developers to

build applications that can dynamically scale to meet varying demands. For instance, Azure Functions can handle

background tasks, asynchronous processing, and microservices architecture, while ASP.NET Core manages the

frontend web application logic and user interactions. This integrated approach not only enhances the scalability and

performance of web applications but also streamlines development workflows by enabling developers to utilize the

best features of both platforms.

In this paper, we will delve into the architectural considerations of integrating Azure Functions with ASP.NET

Core, exploring how this synergy can be effectively harnessed to build scalable, resilient, and efficient applications.

We will examine the key benefits of this integration, such as improved scalability, cost optimization, and simplified

maintenance. Additionally, we will provide practical insights into implementing this combination, offering

examples and best practices to guide developers in their journey towards building next-generation web applications.

Medavarapu SS Euro. J. Adv. Engg. Tech., 2022, 9(3):179-181

180

By the end of this review, readers will gain a comprehensive understanding of how Azure Functions and ASP.NET

Core can be integrated to create a decentralized, intelligent, and serverless application architecture. This knowledge

will empower developers to innovate and adapt to the rapidly changing technological landscape, ultimately

delivering superior applications that meet the demands of today's digital economy.

METHODS

Azure Functions Overview

Azure Functions is an event-driven, serverless compute service that allows developers to run code on-demand

without provisioning or managing infrastructure. The key features of Azure Functions include:

1. Event-Driven Execution: Functions can be triggered by various events such as HTTP requests, database

changes, or messages in a queue.

2. Scalability: Azure Functions automatically scale to meet demand, handling spikes in traffic seamlessly.

3. Cost Efficiency: With a pay-per-execution pricing model, users only pay for the compute resources consumed

during the execution of their functions [1].

Figure 1: Azure Functions Architecture

ASP.NET Core Integration

ASP.NET Core can be integrated with Azure Functions to build serverless web applications. The integration

process involves the following steps:

1. Creating an ASP.NET Core Project Developers start by creating a new ASP.NET Core project using tools like

Visual Studio or the .NET CLI.

2. Adding Azure Functions: Within the ASP.NET Core project, developers can add Azure Functions by installing

the necessary NuGet packages and creating function triggers (e.g., HTTP triggers).

3. Configuration: Configuration settings for the Azure Functions and the ASP.NET Core application can be

managed through the Azure portal or configuration files.

Use Cases

1. Microservices Architecture: Azure Functions can be used to implement microservices, where each function

represents a discrete unit of functionality within a larger ASP.NET Core application.

2. API Backends: Developers can create APIs using ASP.NET Core and deploy them as serverless functions,

enabling scalable and cost-effective backend services.

3. Real-Time Processing: Azure Functions are ideal for real-time data processing tasks, such as processing IoT data

streams or handling real-time user interactions [2].

RESULTS

Performance Analysis

The integration of Azure Functions with ASP.NET Core offers several performance benefits, including:

1. Scalability: Functions scale automatically based on demand, ensuring that the application can handle varying

loads without manual intervention.

2. Reduced Latency: By using serverless functions, developers can reduce the latency associated with traditional

server-based architectures, leading to faster response times for end-users.

3. Cost Savings: The pay-per-execution model of Azure Functions can result in significant cost savings, especially

for applications with variable or unpredictable workloads [3].

Medavarapu SS Euro. J. Adv. Engg. Tech., 2022, 9(3):179-181

181

Table 1: Comparison of Traditional and Serverless Architectures

Real-World Example

A real-world example of integrating Azure Functions with ASP.NET Core can be seen in a retail application that

handles user requests for product searches and order processing. By leveraging serverless functions, the application

can efficiently process search queries and order transactions in real-time, scaling automatically during peak

shopping seasons [4].

CONCLUSION

The integration of Azure Functions with ASP.NET Core represents a powerful combination for building modern

web applications. This approach offers significant benefits in terms of scalability, performance, and cost-efficiency.

By abstracting infrastructure management, developers can focus on writing code and delivering features faster.

Despite the numerous advantages, developers should be aware of potential challenges such as cold start latency and

the complexity of debugging serverless applications. Future research and development in this area will likely

address these challenges, further solidifying the role of serverless computing in the landscape of web development.

REFERENCES

[1]. Castro, M., Costa, P., & Rowstron, A. (2017). Performance and availability of cloud applications: A long-

term study. *Microsoft Research*.

[2]. Gill, P., Jain, N., & Nagappan, N. (2019). Understanding the performance and scalability of Azure

Functions. *Proceedings of the ACM Symposium on Cloud Computing*.

[3]. Fowler, M. (2018). Serverless architectures. *Martin Fowler Blog*. Retrieved from

[https://martinfowler.com/articles/serverless.html] (https://martinfowler.com/articles/serverless.html).

[4]. Gupta, A., & Dua, V. (2020). Practical serverless computing: A guide to building, managing, and operating

serverless architectures. *O'Reilly Media*.

