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ABSTRACT 

This paper presents flood prediction models for the state of Kerala in India by evaluating the monthly rainfall 

data and applying machine learning algorithms including Logistic Regression, K-Nearest Neighbors, Decision 

Trees, Random Forests, and Support Vector Machine. Despite demonstrating high accuracy in predicting flood 

occurrences within a given year, these models lack both quantitative and qualitative explanations for their 

prediction decisions. The paper addresses this gap by illustrating how underlying features influencing the 

prediction decisions are identified. Additionally, the study extends its insights by incorporating explainable 

artificial intelligence modules such as SHAP and LIME to provide a detailed understanding of the models. The 

results obtained affirm the validity of the findings revealed by these explainer modules, based on the historical 

monthly rainfall data related to floods in Kerala 
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INTRODUCTION 

Presently, natural calamities like floods exert a significant influence on both humans and infrastructure. The 

expenses associated with these disasters have risen substantially, encompassing not only economic ramifications 

but also detrimental effects on the environment and human lives. This escalating cost is attributed to various 

factors, including population growth and alterations in land use patterns. Additionally, the recent surge in global 

warming has contributed to an increased frequency of floods worldwide. India, particularly Kerala, has been 

severely impacted by these floods, with 2018 being a notable year. The Central Water Commission (CWC) of 

India reported extensive flooding in Kerala during August 2018, affecting millions and causing over 400 deaths. 

According to the Associated Chambers of Commerce and Industry of India (ASSOCHAM), the estimated 

damage incurred by Kerala due to this disaster amounts to 15,000 to 20,000 crores. The coming years are 

anticipated to continue presenting significant challenges in this regard. In the forthcoming years, it is imperative 

to devise a solution capable of forecasting floods well in advance to mitigate potential damage. Traditionally, 

models were employed for predicting events like storms, rainfall, and natural calamities, yielding satisfactory 

results but demanding extensive processing units and substantial computational power, which hindered timely 

predictions. The implementation of traditional models also necessitated profound knowledge of hydrological 

study parameters, and despite their complexity, these models exhibited failures in accurately predicting floods, 

as exemplified by an incident in Queensland, Australia, in 2010. Numerical prediction models similarly proved 

unreliable due to logical errors. Recent technological advancements offer numerous methods for developing 

more precise and accurate applications to enhance flood predictions. Among these advancements, Artificial 

Intelligence (AI) and machine learning have garnered significant attention due to their cost-effectiveness, 

minimal coding requirements, low resource needs, and the ability to quickly and accurately learn from past 

events, leading to early predictions. While machine learning models have demonstrated benefits in the 

technological industry, end users often have limited insights into the internal workings of these models, 

resulting in a "black-box" effect. As these models increase in complexity, it becomes challenging to identify 

biases and errors in the prediction process. Failure to address this issue can lead to a reduction in trust among 
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users, potentially leading to rejection of these models in real-time scenarios. This is where Explainable Artificial 

Intelligence (XAI) becomes crucial. The authors note a lack of research aimed at making flood prediction 

models more transparent and interpretable for users. Therefore, the paper's contributions include the 

development of a flood prediction system coupled with model explainability, the assessment of prediction model 

accuracy, and the analysis of findings uncovered by explainer modules based on historical flood data. Machine 

learning algorithms such as Logistic Regression, K-Nearest Neighbors (KNN), Decision Trees, and Support 

Vector Machine have been chosen for the flood prediction system's development and model explainability using 

XAI techniques such as Shapley Adaptive Explanation (SHAP) and Local Interpretable Model-Agnostic 

Explanation (LIME). 

 

EASE OF USE 

A. Area of study 

The chosen area under investigation is the state of Kerala, situated in southern India. In August 2018, Kerala 

experienced highly uncommon flooding characterized by continuous rainfall from the 8th to the 17th of August. 

Despite possessing an extensive coastline and numerous reservoirs, the state encountered challenges in retaining 

water within riverbanks, resulting in significant overflow in the Periyar river and Vembanad Lake. According to 

the Chamber of Commerce India, the financial toll on the state due to the floods is estimated to be around 2000 

crores. 

B. Data 

The dataset utilized for constructing the flood prediction model pertains to the state of Kerala, spanning a 

duration of 115 years, commencing from 1901 to 2015. This dataset comprises 118 entries with 16 distinct 

columns of information, delineating monthly rainfall. Additionally, one column explicitly indicates whether a 

flood occurred in a given year, denoted as either "Yes" or "No." Model predictions are based on the occurrence 

of monthly rainfall within a specific year. A comprehensive analysis was conducted, focusing on the average 

monthly rainfall from 1901 to 2015. This analysis is visually represented in Fig. 2, portraying a bar graph that 

highlights months with the highest and lowest rainfall. As depicted in Fig. 2, a substantial concentration of 

rainfall is observed particularly in June and July. It's important to note that this outcome is derived from the 

average rainfall over the 116-year period. 

 
Figure 1: Map of Kerala 
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Figure 2: Monthly rainfall analysis 

 

FLOOD PREDICTION MODELS 

AI is essential for enhancing flood prediction accuracy and preventing errors in forecasting. Traditional flood 

prediction systems often fall short in delivering precise forecasts due to insufficient information. This lack of 

accuracy can result in adverse consequences, jeopardizing residents who may be unable to make timely 

evacuation decisions, thereby putting their lives at risk. 

Machine Learning (ML) utilizes mathematical expressions and algorithms to predict floods. The models are 

data-driven, relying on historical data to enhance prediction systems and deliver accurate results in a cost-

effective manner. To implement a successful prediction model, the initial step involved preprocessing the 

dataset by addressing null values. Subsequently, descriptive data in the dataset was converted into numerical 

format since ML models cannot directly handle categorical data. Once the data was encoded numerically, the 

dataset was split into a training dataset (70%) and a test dataset (30%) to assess the model's performance by 

comparing results on trained and test data. 

 

A. K-Nearest Neighbours 

K-Nearest Neighbors (KNN) functions as a supervised machine learning algorithm applicable to both 

classification and regression tasks. However, it is predominantly employed as a classification model in most 

scenarios. KNN operates on labeled data, classifying it according to the attributes of its neighboring data points. 

The 'K' in KNN denotes the quantity of nearest neighbors considered when classifying new data. This model 

relies on the Euclidean distance formula to determine the proximity between two points in a plane with 

coordinates (x, y) and (a, b), expressed as: 

    (1) 

The algorithm calculates the distance between a particular data that requires to be classified and its nearest 

neighbors. Basing on the nearest neighbors distance it is classified into that class of data. 

 

B. Logistic Regression 

Logistic Regression is one of the most simple and commonly used Machine Learning algorithms for two-class 

classification. It is easy to implement and can be used as the baseline for any binary classification problem. Its 

basic fundamental concepts are also constructive in deep learning. Logistic regression describes and estimates 

the relationship between one dependent binary variable and independent variables. Logistic Regression is a 

supervised learning model which is used for solving classification problems. It is used when the output is 

necessary to be present in the 0 or 1, Yes or No, True or False, High or Low. This algorithm works based on the 

equation below: 



Movva SS                                                        Euro. J. Adv. Engg. Tech., 2022, 9(3):139-146 

___________________________________________________________________________ 

142 

 (2) 

 

C. Decision Trees 

Decision tress are supervised learning models with flexibility of the usage in both regression and classification 

kind of problems. It consists of root nodes, internal nodes, and leaf nodes. The decision tree works by making 

the question for decision as the root node and based on the question the tree is extended until the least level of 

entropy is reached. The formula for entropy is given as 

  (3) 

where k represents the numbers of elements present in the dataset, P is the probability of an element. Decision 

tree gave an accuracy of 75% which is relatively low meaning this would not be the most recommended 

algorithm for the flood prediction purpose. 

 

C. Support Vector Machines (Svm) 

The Support Vector Machine (SVM) is a supervised learning algorithm applicable for both classification and 

regression tasks. Employing the kernel trick, it transforms data, enabling the formation of an optimal boundary 

(hyperplane) to discern between potential outputs. SVM operates by categorizing data into support vectors, 

subsequently drawing an optimal hyperplane between them while maximizing the distance between the 

hyperplane and the vectors. 

 

FLOOD EXPLAINERS 

While machines have demonstrated superior performance compared to humans, there remains skepticism 

regarding the reliability of solutions provided by machine learning models. The extensive calculations 

performed by these models for predictions often lack transparency, making it challenging for humans to 

comprehend. Addressing this issue, Explainable AI (XAI) models play a crucial role. XAI facilitates the 

interpretation of machine learning models in a format understandable by humans, offering transparency and 

clarity. As a component of Artificial Intelligence (AI), XAI contributes to providing explicit explanations for 

human comprehension [25]. Additionally, XAI helps establish trust in the model by revealing the influential 

data affecting prediction results, displaying features of utmost importance. This paper focuses primarily on XAI 

methods, specifically LIME and SHAP. 

 

A. Shapley Additive Explanation 

The SHAP methodology is based on the game theory concept of Shapley values, which was introduced by 

Lloyd in 1952. This concept aims to address scenarios where a combination of elements, forming an entity X, 

results in an output Y, and seeks to determine the individual contributions leading to this outcome. SHAP 

primarily seeks to elucidate the extent to which each individual feature contributes to achieving the outcome. In 

SHAP, additivity is defined as follows: Given a set of inputs x and a model f(x), along with a simplified local 

input x' and an explanatory model g, it is important to ensure that if x' is approximately equal to x, then g(x') 

should also be roughly equal to f(x'), and g must take on the following form: 

    (4) 

 

B. Local Interpretable Model Explanations (Lime) 

Local Interpretable Model Explanation (LIME) checks if the prediction that has been made is close to the 

expected model results or not. The LIME focuses on local interpretability, which is determined by accessing 

only one input feature that fits in a line of linearity using a regularization constraint applied to a linear regression 

model. LIME takes a single data input and checks for all the features in the data that are made responsible for 

the prediction of the machine learning models and classified them into two categories on either side of a line 

where the left-hand side of the line shows the features in the dataset that are having negative impact on the 

model prediction and the right-hand side of the line represents the features that are having a positive impact on 
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the machine learning model predictions. In this way the LIME builds the trust on the results by clearly 

displaying the interior working of the machine learning models. The mathematical interpretation of the LIME 

model is as follows: 

  (5) 

 

RESULTS, ANALYSIS AND VALIDATION 

A. Model Selection 

All prediction models will be evaluated in terms of the accuracy, precision, recall and F1-score. Table I shows 

the performance of the prediction based on 70% training and 30% test dataset. It can be noticed from Table I 

that logistic regression has shown am accuracy of 0.95, recall score of o.95 meaning that there are very less 

chances of falsely predicting a positive value and the F1 score of o.95 shows that there is a very good balance 

between the precision and recall scores meaning that the overall performance of Logistic Regression is very 

good for the prediction of floods. While the other model KNN shows the least accuracy of 0.75 with very less 

precision, recall and F1-scores of 0.8, 0.66, and 0.72. The remaining two models’ decision trees and support 

vector machine also do not show expected efficiency when we look at their metric scores. From the above study 

it can be clearly seen that the Logistic Regression has outperformed the remaining three machine learning 

models, making it the best recommendable machine learning model for the accurate prediction of floods. Hence, 

it will be used to analyze the relevance of features. 

Table 1: Prediction results on test dataset 

Model Accuracy Precision Recall F1-score 

Logistic Regression 0.95 1.0 0.91 0.95 

KNN 0.75 0.8 0.66 0.72 

Decision Tree 0.83 0.9 0.75 0.81 

SVM 0.87 0.91 0.84 0.87 

 

B. Flood analysis with Explainable AI 

After performing the implementation of the machine learning algorithms by training and testing the data 

Logistic regression looks to perform the best with an accuracy of 0.95. But to understand the internal working of 

the logistic regression model it important to open the Blackbox and learn its working with the help of SHAP and 

LIME. 

 
Figure 3: Features contribution to flood and no-flood from 1901 to 2015 by SHAP 
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SHAP: The SHAP has been used to identify the feature importance in the model prediction. Specifically, it 

highlights the influence of each month's rainfall data on the machine learning model's ability to forecast floods 

or non-floods. As depicted in Figure 3, the SHAP analysis ranks the months based on their impact on the model 

output, with July's rainfall data exerting the greatest influence, followed by May, June, September, and August. 

November, April, and October contribute moderately to the model's predictive accuracy, while January, 

February, and March have the least impact. This analysis provides a comprehensive overview of feature 

contributions from 1901 to 2015 as unveiled by SHAP. 

LIME: After implementing the LIME, the following results have been identified. In 1947, there was a flood in 

Kerala. LIME output the explanation and analysis in Fig. 4. 

 
Figure 4: Features contribution to flood and no-flood in 1947 by LIME 

 

Fig. 4 shows that the year 1947 has the complete possibility of flood as the months August contributes 739 

meters of rainfall which is greater than the threshold value of 510.02 that has been set by the lime to classify 

into month that causes flood or not. Similarly, September can be seen as the month with heavy rainfall causing 

the result to be as flood. The April month contribution also contributed to flood and the December contributed 

the least to the prediction of floods in that year. It is interesting to note that LIME reveals the local analysis of 

feature contributions for the particular year. 

 
Figure 5: Features contribution to flood and no-flood in 1934 by LIME 
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Comparing the results that have been identified in LIME with the overall results provided by the SHAP, the 

months August, September are among the top five months and April contributes at medium for the prediction of 

the model results in SHAP. The same is seen in the LIME results which show the month August and September 

contributing the highest to the model output in the year 1947 for a flood occurrence. Fig. 5 depicts the LIME 

prediction which shows that there is no flood in the 1934. This is validated by the fact that July has the highest 

contribution to the model results with the month having rainfall of 415.0 which is very less leading to the 

prediction as no floods in the 1934.Comparing the SHAP and LIME results, SHAP shows that July, June, 

August, May, and September contribute the highest to the model output and similarly in LIME the same months 

are responsible for the correct prediction of the output. Comparing the results of the SHAP and LIME, both the 

models project the months May, June, July, and September as the months with the highest impact on the model 

prediction. 

 

CONCLUSION 

The paper highlights the necessity for a predictive model based on machine learning to forecast floods. It 

compares four distinct machine learning models – KNN, Decision Tree, Logistic Regression, and Support 

Vector Machine – based on various metric scores, including accuracy, precision, recall, and F1-score. The 

findings indicate that Logistic Regression stands out as the superior model with the highest metric scores. 

Additionally, the paper validates the machine learning model's functionality using Explainable AI models, 

namely SHAP and LIME. These models respectively disclose global and local feature contributions to 

predicting flood and no-flood scenarios. The future direction of the research involves exploring deep learning 

models and integrating human-machine interaction. This framework aims to empower users to discover 

solutions facilitating earlier flood forecasts in the years to come. 
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