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ABSTRACT 

In this paper, the discrete models of two types of sequential decision processes (i.e. open and closed graph 

topologies) are developed. Under the adopted counting policy of nodes, it is shown that a sequential open graph 

topology with n levels along  the x-axis,  involves a total of  n (n+1)/2 states (nodes). However, for a closed graph 

topology with 2n-1 levels along  the x-axis,  it is shown also that the total number of state (nodes) is n2. In 

addition, for both types of open and closed graph processes,  their dynamic state models are outlined, and the 

overall cost optimization problems are transformed into HJB (Hamilton-Jacobi-Bellman) Matrix equations,  

associated with state model constraints.  Furthermore, a set of custom flowcharts are established  in order to 

develop corresponding Matlab custom solvers. Finally, the main results obtained from the analysis of relevant case 

studies, show the simplicity and great conviviality of the proposed solvers for optimal sequential decision 

processes. 
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INTRODUCTION 

The sequential decision processes are widely encountered in applied science and engineering applications, e.g. 

management science, operations research, manufacturing management systems, communication networks and 

feedback control systems [1]. However, without lost of generality, the class of sequential decision processes studied 

in this paper, consist of two classes, i.e. open graph and closed graph topologies. Each sequential graph candidate 

under study consists of one root node (or state) at level 1, followed by Nk states of the same generation at stage k. 

Without lost of generality, a constant cost function is incurred from any single state to the next, and the relevant 

problem under consideration is to compute a target path (if any), associated with the optimum cost flow problem.  

Many software tools are available in the scientific literature, for solving minimum cost flow problems. A few 

examples are Linear Network Optimization Software [2], Large Scale Nonlinear Network Optimizer [3], and even 

C-simPLEX [4]. Among these optimization tools there are numerous embedded Matlab solvers, e.g. [5] : graph, 

treeplot, treelayout, addnode, addedge, addnode, subgraph, shortest, etc. However, the great limitation of these 

embedded solvers, relies on the fact that they behave as input-output black boxes, with neither algorithmic details 

on their intrinsic code, nor possible opportunities for either their extension or improvement. Therefore, a more 

efficient solution approach for Matlab programmers, is to reinforce and extended the capabilities of current Matlab 

editions by suitable and custom functions, to be well checked and published for possible use by a wide community 

of Matlab users.  

The scientific contribution to be outlined in this paper relies the following assumptions: a) The class of sequential 

decision process considered consists of sequential graphs; b) each graph topology can be either open or closed: c) 

the nodes of a graph are organized into x-axis layer levels with x Є {1, 2, …, n, …}, and y-axis levels with y Є {1, 

2, …, m, …}; d) a constant forward cost is attached to any direct path between two successive nodes; e) A direct 

increasing path between 2 nodes i and j respectively, incurred a cost Cup(i, j); f) A direct decreasing path between 2 

nodes k and p respectively, incurred a cost Cup(k, p). Given these basic assumptions, the next sections of this paper, 
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consist of : a) Development of well tested dynamic models and optimization schemes of open and closed graphs 

processes; b) Results and discussions when testing the proposed custom Matlab dynamic models and solvers on as 

sample of decision graph processes; c) Conclusion and future perspectives.  

 

Dynamic Model and Optimization Scheme of Open Graph Decision Processes 

Matlab matrix topology of open graph decision processes 

Fig. 1 shows Matlab Matrix topology of an open graph process involving n levels along the x-axis, consists of 

Nop(n) nodes, Rop(n) rows and Cop(n) columns. Using a recurrent reasoning, it is easy to show that Nop(n), Rop(n) 

and Cop(n) can be explicitly defined by Equation (1).  

  (n)C   (c)     ; 1n 2(n)R   (b)       /21)(nn  (n)N   (a) onopop n=−=+=       (1)  

 
Fig. 1 Matlab Matrix topology of open graph processes  

As an implication, given in Fig. 1 the nodes state-space, with index k defined by (2). Therefore, a straightforward 

analysis indicates that the resulting n-stage open-graph decision process, can be coded by a (2 n – 1) x n matrix.  

k Є {1, 2, …, n, …, n (n+1)/2},          (2) 

In addition, unlike standard matrix schemes used in graph theory (Ex: node-arc incidence matrix, node-node 

adjacent matrix, adjacency lists, …, see [6] for details), an open graph Gop defined by Equations (3) can be built in 

such a way that its digital form maintains the structure as well as the states number of the original graph. Let 

consider n = 5 without lost of generality, then the digital code of Gop matrix is a 9 x 5 matrix given by (3).  

 

         (3) 

Matlab matrix costs of open graph decision processes 

Let us consider for the sake of better understanding, a simple case with n = 5 (level on the open graph). Under these 

conditions, equations (4) show the structure of the resulting dual costs Matrix Cup (for all increasing paths) and 

Cdown (for decreasing paths) from corresponding left starting nodes. It is worth nothing that the terminal colons of 

both dual matrix costs must be set to known identical cost values. 

 

 

 

 

 

 (4) 

  

 

 

  

Matrix models (3) and (4), can be generated for any open graph with length n on the x-axis. Fig. 2 shows the 
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flowcharts of the proposed custom Matlab functions to be implemented for automatic computing of matrix data 

associated with open graph topology and corresponding dual matrix costs. 

 
Fig. 2 Flowcharts of custom Matlab functions opengraph.m and opencost.m 

 

Dynamic model of open graph decision processes 

Consider the state space χ = {1, 2, 3, …., n (n+1)/2} adopted in Figure 1, and a decision space U = {-1, 0, 1}. For 

each u  U and from any possible state x  X, u = -1 if the downward path is chosen from x, and u = 1 if an upward 

path is chosen, and u = 0 for any right side terminal node. Subsequently, a dynamic model resulting from the matrix 

model described by (5). In the notation xi, j, i stands for any appropriate row of the matrix Gop.  
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HJB equations open graph decision processes  

For an open graph topology, the analysis of the minimum cost flow problem relies on a straightforward application 

of the dynamic programming principle. Therefore, the optimal solution can be computed by solving the following 

HJB (Hamilton-Jacobi-Bellman) equation [6].  

 

     (6) 

In (6), k = n-1, n-2, …, 1 (processing backward index), whereas i stands for an appropriate raw of Matlab cost 

matrix, i.e. Gop (3). The state xi,k is defined as in (5), J*(.) being the cost-to-go function. Therefore, given the 

dynamic state model (5), the resulting optimal outcomes (i.e. controls, states and associated costs) of the , can be 

computed according to a backward recursive strategy using a custom Matlab function, .  

 

Flowchart of the Open graph optimization scheme 

Fig. 4 shows a simple custom flowchart of the optimal closed graph decision processes. It has been easily developed 

and tested using Matlab script programming language. 

 

 
Fig. 3 Flowchart of the open graph optimization scheme 

 

Dynamic Model and Optimization Scheme of Closed Graph Decision Processes 

Matlab Matrix topology and digital map of closed graph decision processes 

Fig. 4 shows Matlab Matrix topology of a closed graph process involving 2n-1 levels along the x-axis. For this 

more intricate case however, the required design parameters, i.e. Ncl(n) nodes, Rcl(n) rows and Ccl(n) columns, are 

given by the set of Equations given by (7).  
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Fig. 4 Matlab matrix topology and digital map of closed graph processes 

 

Matlab matrix topology of closed graph decision processes 

Given the state-space {1, 2, …, n, n+1, …, 2n-1} considered in Fig. 4, and following Equations (8), it becomes 

obvious that any (2n-1)-stage closed graph, can be digitally coded by a square (2n-1) x (2n-1) matrix Gcl. As an 

example, for n = 5, then (2n-1) = 9, in which case the Gcl matrix is given as by (8).  
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Matlab Matrix costs of closed graph decision processes 

From Fig. 4 where n = 5, the associated dual matrix costs Cup and Cdown are defined by (9) and (10) respectively. In 

this case, the total number of involve nodes is n2 = 25 states (nodes). Even in this case, Matrix terms (8), (9) and 

(10) can be automatically generated for any arbitrary size of x-axis, using simple custom Matlab functions. 
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000015Cdown 0000

00019Cdown 010,15Cdown 000

0022Cdown 014,19Cdown  06,10Cdown 00

024Cdown 018,22Cdown  09,14Cdown  03,6Cdown 0

25Cdown 021,24Cdown 013,18Cdown 05,9Cdown 01,3Cdown 

023,25Cdown 017,21Cdown 08,13Cdown 02,5Cdown 0

0020,23Cdown 012,17Cdown 04,8Cdown 00

00016,20Cdown 07,12Cdown 000

000011,16Cdown 0000

          Cdown

 (10)  

  

Fig. 5 shows the flowcharts of the aforementioned custom Matlab functions. According to their declared syntaxes, 

they can be either executed from Matlab command Windows, or called from a target Matlab subroutine. 

 
Fig. 5 Flowcharts of custom Matlab functions closegraph.m and closecost.m 

 

Dynamic model of closed graph decision processes 

Given the state space χ = {1, 2, 3, …., N = n2} adopted for a closed-graph decision process, as well as a control 

decision space U = {-1, 0, 1}, our analysis indicates that a complete dynamic model of the resulting sequential 

process, can be exactly defined according to the recursive law (11).  
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   (11) 

with x (n, 1) = 1, and x (2n –1, 2n-1) = n2. 

 

HJB equation of closed graph decision processes 

The HJB Equations of a closed graph is structurally similar to that obtained in the open topology case, with similar 

boundary conditions. These HJB equations are defined by (12), where k = 2n-1, 2n-2, …, 1 (backward sequence 

index). 

 ( )),(*),,(*)( 11,11,
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ki xJCdownxJCupxJ Min      (12) 

As a conclusion, the set of equations {(11), (12)} can be organized as an overall Matlab file, e.g. closegraphopt.m, 

with input argument (G, Cup, Cdown) and outputs . 

 

Flowchart of the closed graph optimization scheme 

Fig. 6 stands for the flowchart of closed graph optimization processes. Although it seems long, it has been easily 

implemented and well tested using Matlab script programming language. 

 
Fig. 6 Flowchart of the closed graph optimization scheme 
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RESULTS AND DISCUSSIONS 

A few relevant technical details are required for a better understanding of the strategy used to obtain the simulation 

results to be presented in this section. It is worth noting that the whole analytical developments and flowcharts 

presented in this paper, have been implemented as Matlab Script components, before been organized into a custom 

Matlab toolox consisting of embedded solvers for : a) Dynamic models; b) Associated HJB equations; c) Optimal 

state feedback control problems and more.  

In addition, for the sake of better simplicity and conviviality when using the proposed custom Matlab toolbox, the 

user only needs is to create and save a data file of a target application into Matlab active folder, and then to open 

Matlab application main frame, for updating the name of existing data file. As illustrative examples, Fig. 7 shows 

Matlab application main frame for open graph decision processes with n = 5 levels and n (n+1)/2 nodes, in which 

the actual Matlab data file (app5opengraphdata.m) is called in line 6. Similarly, in Fig. 8 corresponding to closed 

graph processes, the corresponding Matlab data file (app4closegraphdata.m) is called in line 6 too. Then, using the 

proposed Matlab application main frame is simple, friendly and convivial for Matlab users. 

 

 
Fig. 7 Main frame of Matlab app5openGraph.m  

 
Fig. 8 Main frame of Matlab app4closeGraph.m  
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The following text shows the results monitored on Matlab command, when execution Matlab main frame in Fig. 7. 

They have been transferred here by copy and paste action. 

 >>  

 >> app5opengraph 

 

INPUT DATA From app5opgrapdata.m : 

n = 

5 

INPUT DATA:Gop_Cup_Cdown 

Gop = 

0 0 0 0 11 

0 0 0 7 0 

0 0 4 0 12 

0 2 0 8 0 

1 0 5 0 13 

0 3 0 9 0 

0 0 6 0 14 

0 0 0 10 0 

0 0 0 0 15 

 

Cup = 

0 0 0 0 10 

0 0 0 1 0 

0 0 2 0 5 

0 2 0 2 0 

2 0 1 0 1 

0 2 0 3 0 

0 0 2 0 7 

0 0 0 1 0 

0 0 0 0 3 

 

Cdown = 

0 0 0 0 10 

0 0 0 2 0 

0 0 1 0 5 

0 1 0 4 0 

1 0 2 0 1 

0 1 0 2 0 

0 0 2 0 7 

0 0 0 1 0 

0 0 0 0 3 

 

OPTIMAL OUTCOMES : uopt, xopt, Jopt 

uopt = 

-1 -1 1 1 0 

xopt = 

1 3 6 9 13 

 

Jopt = 

0 0 0 0 10 

0 0 0 7 0 

0 0 6 0 5 

0 7 0 5 0 

8 0 6 0 1 

0 7 0 4 0 

0 0 6 0 7 

0 0 0 4 0 

0 0 0 0 3 

 

>> 
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The following result also shows the outcomes monitored on Matlab command, when execution Matlab main frame 

in Fig. 7.  

 >> app4closegraph 

 

INPUT DATA From app4clgrapdata.m :  

n = 

 4 

INPUT DATA:Gcl_Cup_Cdown 

 

Gcl = 

 0 0 0 7 0 0 0 

 0 0 4 0 11 0 0 

 0 2 0 8 0 14 0 

 1 0 5 0 12 0 16 

 0 3 0 9 0 15 0 

 0 0 6 0 13 0 0 

 0 0 0 10 0 0 0 

 

Cup = 

 0 0 0 2 0 0 0 

 0 0 5 0 0 0 0 

 0 10 0 9 0 0 0 

 7 0 8 0 8 0 4 

 0 5 0 9 0 6 0 

 0 0 10 0 5 0 0 

 0 0 0 11 0 0 0 

 

 Cdown = 

 0 0 0 7 0 0 0 

 0 0 7 0 9 0 0 

 0 10 0 7 0 7 0 

 12 0 12 0 7 0 4 

 0 5 0 9 0 0 0 

 0 0 8 0 0 0 0 

 0 0 0 0 0 0 0 

 

OPTIMIZATION OUTCOMES: 

 

uopt = 

 1 1 -1 -1 -1 1 0 

 

xopt = 

 1 2 4 8 12 15 16 

 

Jopt = 

 0 0 0 23 0 0 0 

 0 0 27 0 16 0 0 

 0 37 0 20 0 7 0 

 44 0 28 0 13 0 0 

 0 33 0 20 0 6 0 

 0 0 30 0 11 0 0 

 0 0 0 22 0 0 0 

>> 

A set of our custom Matlab solvers initiated in this paper with successful implementation and tests, are summarized 

in Table 1. Depending on the type of decision process under study, the optimal control decisions of the minimum 

cost flow problem, can be backwardly solved off-line, and then saved for real processing application needs of 

dynamic programming strategy.  
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CONCLUSION 

The custom software solvers implemented in this research paper, could be used to extend the use of Matlab 

optimization toolbox to the considered class of sequential decision processes. As an implication, the minimum cost 

flow problems could be solved using the set of well tested Matlab scripts initiated in this research. They are more 

straightforward and easier to handle modelling and optimization tools compared to compiled MEX-files requiring 

external solving environment. However, a few technical singularities, have not been explicitly outlined in our 

research methodology, e.g. a) What would happen under two (or more) paths with the same overall cost value ? b) 

What would happen if some internal nodes of the sequential decision graph involves more than 2 input cost flows, 

or more than 2 output cost flows, or a single input or single output cost flow ?. Furthermore, in order to capture the 

attention of a maximum community of Matlab users, it would be interesting to migrate the proposed custom Matlab 

script solvers, into Matlab Advanced development technologies, e.g. Matlab Live Script, Matlab GUIDE, Matlab 

Application Designer, Matlab Deployed App, etc. These numerous scientific perspectives will be investigated in 

Future research Works. 
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