
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2022, 9(12):90-100

Research Article ISSN: 2394 - 658X

90

Matlab-Based Modelling and Dynamic Optimization

of a Class of Sequential Decision Processes

Jean Mbihi1, Paul Owoundi Etouké2 and Arnaud Biyobo Obono3

1,2,3Research Laboratory of Computer Science Engineering and Automation

ENSET, University of Douala, P.O. Box 1872, Douala, Cameroon
1mbihidr@yahoo.fr, 2*etouke_paul@yahoo.fr, 3obonobiyo@yahoo.fr

ABSTRACT

In this paper, the discrete models of two types of sequential decision processes (i.e. open and closed graph

topologies) are developed. Under the adopted counting policy of nodes, it is shown that a sequential open graph

topology with n levels along the x-axis, involves a total of n (n+1)/2 states (nodes). However, for a closed graph

topology with 2n-1 levels along the x-axis, it is shown also that the total number of state (nodes) is n2. In

addition, for both types of open and closed graph processes, their dynamic state models are outlined, and the

overall cost optimization problems are transformed into HJB (Hamilton-Jacobi-Bellman) Matrix equations,

associated with state model constraints. Furthermore, a set of custom flowcharts are established in order to

develop corresponding Matlab custom solvers. Finally, the main results obtained from the analysis of relevant case

studies, show the simplicity and great conviviality of the proposed solvers for optimal sequential decision

processes.

Key words: Sequential Decision processes, open and closed topology, dynamic models, dynamic programming

principle, HJB Equations, custom Matlab solvers

__

INTRODUCTION

The sequential decision processes are widely encountered in applied science and engineering applications, e.g.

management science, operations research, manufacturing management systems, communication networks and

feedback control systems [1]. However, without lost of generality, the class of sequential decision processes studied

in this paper, consist of two classes, i.e. open graph and closed graph topologies. Each sequential graph candidate

under study consists of one root node (or state) at level 1, followed by Nk states of the same generation at stage k.

Without lost of generality, a constant cost function is incurred from any single state to the next, and the relevant

problem under consideration is to compute a target path (if any), associated with the optimum cost flow problem.

Many software tools are available in the scientific literature, for solving minimum cost flow problems. A few

examples are Linear Network Optimization Software [2], Large Scale Nonlinear Network Optimizer [3], and even

C-simPLEX [4]. Among these optimization tools there are numerous embedded Matlab solvers, e.g. [5] : graph,

treeplot, treelayout, addnode, addedge, addnode, subgraph, shortest, etc. However, the great limitation of these

embedded solvers, relies on the fact that they behave as input-output black boxes, with neither algorithmic details

on their intrinsic code, nor possible opportunities for either their extension or improvement. Therefore, a more

efficient solution approach for Matlab programmers, is to reinforce and extended the capabilities of current Matlab

editions by suitable and custom functions, to be well checked and published for possible use by a wide community

of Matlab users.

The scientific contribution to be outlined in this paper relies the following assumptions: a) The class of sequential

decision process considered consists of sequential graphs; b) each graph topology can be either open or closed: c)

the nodes of a graph are organized into x-axis layer levels with x Є {1, 2, …, n, …}, and y-axis levels with y Є {1,

2, …, m, …}; d) a constant forward cost is attached to any direct path between two successive nodes; e) A direct

increasing path between 2 nodes i and j respectively, incurred a cost Cup(i, j); f) A direct decreasing path between 2

nodes k and p respectively, incurred a cost Cup(k, p). Given these basic assumptions, the next sections of this paper,

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

91

consist of : a) Development of well tested dynamic models and optimization schemes of open and closed graphs

processes; b) Results and discussions when testing the proposed custom Matlab dynamic models and solvers on as

sample of decision graph processes; c) Conclusion and future perspectives.

Dynamic Model and Optimization Scheme of Open Graph Decision Processes

Matlab matrix topology of open graph decision processes

Fig. 1 shows Matlab Matrix topology of an open graph process involving n levels along the x-axis, consists of

Nop(n) nodes, Rop(n) rows and Cop(n) columns. Using a recurrent reasoning, it is easy to show that Nop(n), Rop(n)

and Cop(n) can be explicitly defined by Equation (1).

 (n)C (c) ; 1n 2(n)R (b) /21)(nn (n)N (a) onopop n=−=+= (1)

Fig. 1 Matlab Matrix topology of open graph processes

As an implication, given in Fig. 1 the nodes state-space, with index k defined by (2). Therefore, a straightforward

analysis indicates that the resulting n-stage open-graph decision process, can be coded by a (2 n – 1) x n matrix.

k Є {1, 2, …, n, …, n (n+1)/2}, (2)

In addition, unlike standard matrix schemes used in graph theory (Ex: node-arc incidence matrix, node-node

adjacent matrix, adjacency lists, …, see [6] for details), an open graph Gop defined by Equations (3) can be built in

such a way that its digital form maintains the structure as well as the states number of the original graph. Let

consider n = 5 without lost of generality, then the digital code of Gop matrix is a 9 x 5 matrix given by (3).

 (3)

Matlab matrix costs of open graph decision processes

Let us consider for the sake of better understanding, a simple case with n = 5 (level on the open graph). Under these

conditions, equations (4) show the structure of the resulting dual costs Matrix Cup (for all increasing paths) and

Cdown (for decreasing paths) from corresponding left starting nodes. It is worth nothing that the terminal colons of

both dual matrix costs must be set to known identical cost values.

 (4)

Matrix models (3) and (4), can be generated for any open graph with length n on the x-axis. Fig. 2 shows the

=

150000

010000

140600

09030

130501

08020

120400

07000

110000

Gop

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

92

flowcharts of the proposed custom Matlab functions to be implemented for automatic computing of matrix data

associated with open graph topology and corresponding dual matrix costs.

Fig. 2 Flowcharts of custom Matlab functions opengraph.m and opencost.m

Dynamic model of open graph decision processes

Consider the state space χ = {1, 2, 3, …., n (n+1)/2} adopted in Figure 1, and a decision space U = {-1, 0, 1}. For

each u U and from any possible state x X, u = -1 if the downward path is chosen from x, and u = 1 if an upward

path is chosen, and u = 0 for any right side terminal node. Subsequently, a dynamic model resulting from the matrix

model described by (5). In the notation xi, j, i stands for any appropriate row of the matrix Gop.

 (5)

1,...,2,1
)(11

)(1

,1,1

,1,1

1, −=

−=++

=+
=

−−

++

+ nkwith
pathdownwardusikx

pathupwarduifkx
x

kiki

kiki

ki

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

93

HJB equations open graph decision processes

For an open graph topology, the analysis of the minimum cost flow problem relies on a straightforward application

of the dynamic programming principle. Therefore, the optimal solution can be computed by solving the following

HJB (Hamilton-Jacobi-Bellman) equation [6].

 (6)

In (6), k = n-1, n-2, …, 1 (processing backward index), whereas i stands for an appropriate raw of Matlab cost

matrix, i.e. Gop (3). The state xi,k is defined as in (5), J*(.) being the cost-to-go function. Therefore, given the

dynamic state model (5), the resulting optimal outcomes (i.e. controls, states and associated costs) of the , can be

computed according to a backward recursive strategy using a custom Matlab function, .

Flowchart of the Open graph optimization scheme

Fig. 4 shows a simple custom flowchart of the optimal closed graph decision processes. It has been easily developed

and tested using Matlab script programming language.

Fig. 3 Flowchart of the open graph optimization scheme

Dynamic Model and Optimization Scheme of Closed Graph Decision Processes

Matlab Matrix topology and digital map of closed graph decision processes

Fig. 4 shows Matlab Matrix topology of a closed graph process involving 2n-1 levels along the x-axis. For this

more intricate case however, the required design parameters, i.e. Ncl(n) nodes, Rcl(n) rows and Ccl(n) columns, are

given by the set of Equations given by (7).

()),(*),,(*))(11,11,

,

, +++− ++= kikikiki

kui

ki xJCdownxJCupxJ Min

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

94

 1-n 2(n)C (c) ;1n 2(n)R (b) ; nn-
2

1)(nn

2

1)(nn
 (n)N (a) clclcl

2 =−==
+

+
+

= (7)

Fig. 4 Matlab matrix topology and digital map of closed graph processes

Matlab matrix topology of closed graph decision processes

Given the state-space {1, 2, …, n, n+1, …, 2n-1} considered in Fig. 4, and following Equations (8), it becomes

obvious that any (2n-1)-stage closed graph, can be digitally coded by a square (2n-1) x (2n-1) matrix Gcl. As an

example, for n = 5, then (2n-1) = 9, in which case the Gcl matrix is given as by (8).

=

0000150000

00019010000

00220140600

02401809030

250210130501

02301708020

00200120400

0001607000

0000110000

Gcl

 (8)

Matlab Matrix costs of closed graph decision processes

From Fig. 4 where n = 5, the associated dual matrix costs Cup and Cdown are defined by (9) and (10) respectively. In

this case, the total number of involve nodes is n2 = 25 states (nodes). Even in this case, Matrix terms (8), (9) and

(10) can be automatically generated for any arbitrary size of x-axis, using simple custom Matlab functions.

=

0000Cup15,190000

000Cup19,220Cup10,14000

00Cup22,240Cup14,180Cup6,900

0Cup24,250Cup18,210Cup9,130Cup3,50

Cup250Cup21,230Cup13,170Cup5,80Cup1,2

0Cup230Cup17,200Cup8,120Cup2,40

00Cup200120Cup4,700

000Cup160Cup7,11000

0000Cup110000

Cup

 (9)

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

95

=

000015Cdown 0000

00019Cdown 010,15Cdown 000

0022Cdown 014,19Cdown 06,10Cdown 00

024Cdown 018,22Cdown 09,14Cdown 03,6Cdown 0

25Cdown 021,24Cdown 013,18Cdown 05,9Cdown 01,3Cdown

023,25Cdown 017,21Cdown 08,13Cdown 02,5Cdown 0

0020,23Cdown 012,17Cdown 04,8Cdown 00

00016,20Cdown 07,12Cdown 000

000011,16Cdown 0000

 Cdown

 (10)

Fig. 5 shows the flowcharts of the aforementioned custom Matlab functions. According to their declared syntaxes,

they can be either executed from Matlab command Windows, or called from a target Matlab subroutine.

Fig. 5 Flowcharts of custom Matlab functions closegraph.m and closecost.m

Dynamic model of closed graph decision processes

Given the state space χ = {1, 2, 3, …., N = n2} adopted for a closed-graph decision process, as well as a control

decision space U = {-1, 0, 1}, our analysis indicates that a complete dynamic model of the resulting sequential

process, can be exactly defined according to the recursive law (11).

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

96

 (11)

with x (n, 1) = 1, and x (2n –1, 2n-1) = n2.

HJB equation of closed graph decision processes

The HJB Equations of a closed graph is structurally similar to that obtained in the open topology case, with similar

boundary conditions. These HJB equations are defined by (12), where k = 2n-1, 2n-2, …, 1 (backward sequence

index).

 ()),(*),,(*)(11,11,

 ,

, +++− ++= kikikiki

kui

ki xJCdownxJCupxJ Min (12)

As a conclusion, the set of equations {(11), (12)} can be organized as an overall Matlab file, e.g. closegraphopt.m,

with input argument (G, Cup, Cdown) and outputs .

Flowchart of the closed graph optimization scheme

Fig. 6 stands for the flowchart of closed graph optimization processes. Although it seems long, it has been easily

implemented and well tested using Matlab script programming language.

Fig. 6 Flowchart of the closed graph optimization scheme

++=

−=−+

=−−+

=

−=++

=+

=

−−

++

−−

++

+

1-2n ..., 2,n 1,n k for
)(1 2

)(1 12

1-n ..., 2, ,1kfor
)(1 1

)(1

,1,1

,1,1

,1,1

,1,1

1,

pathdownwarduifknx

pathupwarduifknx

pathdownwarduifkx

pathupwarduifkx

x

kiki

kiki

kiki

kiki

ki

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

97

RESULTS AND DISCUSSIONS

A few relevant technical details are required for a better understanding of the strategy used to obtain the simulation

results to be presented in this section. It is worth noting that the whole analytical developments and flowcharts

presented in this paper, have been implemented as Matlab Script components, before been organized into a custom

Matlab toolox consisting of embedded solvers for : a) Dynamic models; b) Associated HJB equations; c) Optimal

state feedback control problems and more.

In addition, for the sake of better simplicity and conviviality when using the proposed custom Matlab toolbox, the

user only needs is to create and save a data file of a target application into Matlab active folder, and then to open

Matlab application main frame, for updating the name of existing data file. As illustrative examples, Fig. 7 shows

Matlab application main frame for open graph decision processes with n = 5 levels and n (n+1)/2 nodes, in which

the actual Matlab data file (app5opengraphdata.m) is called in line 6. Similarly, in Fig. 8 corresponding to closed

graph processes, the corresponding Matlab data file (app4closegraphdata.m) is called in line 6 too. Then, using the

proposed Matlab application main frame is simple, friendly and convivial for Matlab users.

Fig. 7 Main frame of Matlab app5openGraph.m

Fig. 8 Main frame of Matlab app4closeGraph.m

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

98

The following text shows the results monitored on Matlab command, when execution Matlab main frame in Fig. 7.

They have been transferred here by copy and paste action.

 >>

 >> app5opengraph

INPUT DATA From app5opgrapdata.m :

n =

5

INPUT DATA:Gop_Cup_Cdown

Gop =

0 0 0 0 11

0 0 0 7 0

0 0 4 0 12

0 2 0 8 0

1 0 5 0 13

0 3 0 9 0

0 0 6 0 14

0 0 0 10 0

0 0 0 0 15

Cup =

0 0 0 0 10

0 0 0 1 0

0 0 2 0 5

0 2 0 2 0

2 0 1 0 1

0 2 0 3 0

0 0 2 0 7

0 0 0 1 0

0 0 0 0 3

Cdown =

0 0 0 0 10

0 0 0 2 0

0 0 1 0 5

0 1 0 4 0

1 0 2 0 1

0 1 0 2 0

0 0 2 0 7

0 0 0 1 0

0 0 0 0 3

OPTIMAL OUTCOMES : uopt, xopt, Jopt

uopt =

-1 -1 1 1 0

xopt =

1 3 6 9 13

Jopt =

0 0 0 0 10

0 0 0 7 0

0 0 6 0 5

0 7 0 5 0

8 0 6 0 1

0 7 0 4 0

0 0 6 0 7

0 0 0 4 0

0 0 0 0 3

>>

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

99

The following result also shows the outcomes monitored on Matlab command, when execution Matlab main frame

in Fig. 7.

 >> app4closegraph

INPUT DATA From app4clgrapdata.m :

n =

 4

INPUT DATA:Gcl_Cup_Cdown

Gcl =

 0 0 0 7 0 0 0

 0 0 4 0 11 0 0

 0 2 0 8 0 14 0

 1 0 5 0 12 0 16

 0 3 0 9 0 15 0

 0 0 6 0 13 0 0

 0 0 0 10 0 0 0

Cup =

 0 0 0 2 0 0 0

 0 0 5 0 0 0 0

 0 10 0 9 0 0 0

 7 0 8 0 8 0 4

 0 5 0 9 0 6 0

 0 0 10 0 5 0 0

 0 0 0 11 0 0 0

 Cdown =

 0 0 0 7 0 0 0

 0 0 7 0 9 0 0

 0 10 0 7 0 7 0

 12 0 12 0 7 0 4

 0 5 0 9 0 0 0

 0 0 8 0 0 0 0

 0 0 0 0 0 0 0

OPTIMIZATION OUTCOMES:

uopt =

 1 1 -1 -1 -1 1 0

xopt =

 1 2 4 8 12 15 16

Jopt =

 0 0 0 23 0 0 0

 0 0 27 0 16 0 0

 0 37 0 20 0 7 0

 44 0 28 0 13 0 0

 0 33 0 20 0 6 0

 0 0 30 0 11 0 0

 0 0 0 22 0 0 0

>>

A set of our custom Matlab solvers initiated in this paper with successful implementation and tests, are summarized

in Table 1. Depending on the type of decision process under study, the optimal control decisions of the minimum

cost flow problem, can be backwardly solved off-line, and then saved for real processing application needs of

dynamic programming strategy.

Mbihi J et al Euro. J. Adv. Engg. Tech., 2022, 9(12):90-100

100

CONCLUSION

The custom software solvers implemented in this research paper, could be used to extend the use of Matlab

optimization toolbox to the considered class of sequential decision processes. As an implication, the minimum cost

flow problems could be solved using the set of well tested Matlab scripts initiated in this research. They are more

straightforward and easier to handle modelling and optimization tools compared to compiled MEX-files requiring

external solving environment. However, a few technical singularities, have not been explicitly outlined in our

research methodology, e.g. a) What would happen under two (or more) paths with the same overall cost value ? b)

What would happen if some internal nodes of the sequential decision graph involves more than 2 input cost flows,

or more than 2 output cost flows, or a single input or single output cost flow ?. Furthermore, in order to capture the

attention of a maximum community of Matlab users, it would be interesting to migrate the proposed custom Matlab

script solvers, into Matlab Advanced development technologies, e.g. Matlab Live Script, Matlab GUIDE, Matlab

Application Designer, Matlab Deployed App, etc. These numerous scientific perspectives will be investigated in

Future research Works.

REFERENCES

[1]. J. A. Bondy and U. S. R. Murty, Graph Theory and applications, © Elsevier Science Ltd, 264 pages, 1984.

[2]. Bertsekas D. P. (1991). Linear Network Optimization: Algorithms and codes , MIT Press, USA.

[3]. Toint P. L. and Tuyttens D (1992). LSNNO: A fortran Subroutine for solving large scale nonlinear

network optimization problem, ACM trans. Math. Software, Vol 18 , 308-328.

[4]. ILOG (2002), AMPL CPLEX System: Version 8.0, User’s manual, ILOG Press.

[5]. Mathworks, Matlab documentation Home, version 2020a (9.8.0.1323502).

[6]. Ravindra K. et al (1993). Network flows, Chap. 2, pp 23-46, Prentice-Hall.

