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ABSTRACT 

In this paper, two methods for robot collaboration in a multi-agent system (MAS) exploration problem based on 

reinforcement learning are presented. In this problem, the agents are placed in an arena where a target is located 

and the goal is to measure the time taken by the robots to detect and destroy it. The experiment was carried out 

several times in the Robotarium's Matlab API (Application Programming Interface) in order to compare the times 

taken by each method. In the first method, called centralised, the agents move in groups and traverse the arena 

from one end to the other, whereas in the second, called decentralised, each agent moves autonomously. The 

experimental results show that both approaches, distributed and centralized, can finally solve the problem, but the 

coordination performance of the proposed centralized approach is much better than that of the decentralized 

approach. We demonstrate through all these experiments that for exploration in an arena with target localization, 

centralized methods are more efficient because they take less time than decentralized methods. 
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INTRODUCTION 

Swarm robotics is a branch of robotics applying distributed intelligence methods to multi-robot systems. It seeks to 

study the design and behaviour of robots [1]. Relatively simple rules can give rise to a complex set of swarm 

behaviours [2]. The cooperation of robots in a swarm already has many applications. [3]. robotic testbeds [4]-[6]. 

Within a few years it will have a powerful impact in several areas[7] [8]  In the army, exploration and rescue 

missions will be greatly improved thanks to cooperative drones; In home automation, thanks to this system, swarms 

of cleaning robots could be created [9]In medicine, swarms of robots could explore the human body in search of 

cancerous cells [10]. 

The problem posed is that of a set of agents having a common goal, having no idea how to reach this goal, and 

having to learn the behaviour to adopt to solve this problem. We are interested in situations where agents cooperate. 

We should therefore find out how agents can learn together to cooperate. This learning is done through artificial 

intelligence and more precisely through reinforcement learning [11], [12].  This mixture of multi-agent systems and 

reinforcement learning should allow complex problems to be solved with fairly simple agents while adapting. The 

aim here is to combine the advantages of these two tools to make a flexible and efficient system. 

In an ADM, agents can be confronted with several problems depending on the desired behaviour.  For example, one 

of the major applications of swarm robotics is the search for targets in the environment. This task can have many 

variants, depending on the nature of the target and the way it is located[13]. Exploration involves the need for a 

swarm of robots to discover the environment. An example where the allocation of exploration areas is done using 

the auction coordination paradigm is presented in [14].  

Faced with the problems of cooperation and collaboration of robots in a swarm for the realization of a common 

global task, the main objective of this article is to bring a clear contribution in the SMA. The main objective of this 

article is to make a clear contribution to the ADMs by proposing in a first step two methods, one centralized and 

another decentralized. In the second part of the paper, a comparison of the time taken by the robots in each of the 

methods to locate a target is made. This article is divided into two main parts: in the first part, we present the 
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methods and tools that allowed us to carry out this work and finally, in the second part we present and discuss the 

results obtained.         

 

METHODS AND TOOLS 

In this section, we present all the different methods and tools that enabled us to carry out our experiments.   

 

Reinforcement learning 

In artificial intelligence, more precisely in machine learning, reinforcement learning consists, for an autonomous 

agent (e.g. robot), in learning the actions to take, from experiments, so as to optimize a quantitative reward over 

time [12], [15]. The agent is immersed in an environment and makes decisions based on its current state. In return, 

the environment provides the agent with a reward, which can be positive or negative. The agent seeks, through 

iterated experiments, an optimal decision-making behaviour (called strategy or policy, and which is a function 

associating the action to be performed with the current state), in the sense that it maximises the sum of the rewards 

over time. 

Reinforcement learning refers to a class of machine learning problems, the aim of which is to learn from 

successive experiments what to do in order to find the best solution. 

 
Fig.  1 Representation of reinforcement learning [16] 

 

The Bellman equation 

It is necessary to introduce the concepts observed above in order to better implement the Bellman equation. We 

have a state s, which represents the state in which the environment is. A represents the actions that the agent can 

take; these depend on the state s of the environment. R represents the reward the agent gets for entering a state.   

=[0,1] which is a reduction factor used to indicate the impact of future rewards on the current expected 

performance state. 

The Bellman equation is defined as [17] : 

 ( ) max( ( , ) ( ))
a

V s R s a V s = +   

This is the next state. 

Consider an agent in a maze trying to find the exit. If he arrives at the green point, he receives a +1 reward, 

whereas if he happens to fall on the red square, he receives a negative -1 reward. The maze is illustrated in the 

following figure 
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Fig. 2 Illustration of the maze with the agent and the different rewards [16] 

Each box here represents a state of the environment. The Bellman equation is used to find the optimal path for the 

robot to exit the maze. There are two possible cases: a deterministic case where the agent can only go in one 

direction, in other words, the probability that its direction will change after making a choice is zero. A second 

stochastic case in which the probability that the agent will not end up in the chosen direction is not zero. This 

second case will be the subject of our study, as it takes into account unpredictable and uncertain factors that will 

influence the decision taken by the agent. 

 

 
Fig.  3 Illustration of the deterministic and stochastic cases for the agent's choice of direction [16] 

This figure illustrates perfectly the two possible cases when the agent makes a choice. On the left, the agent 

decides to go upwards and has a 100% chance of being there. On the right, the agent makes the same choice, but 

has a 10% chance of ending up on the right or the left, and an 80% chance of actually ending up at the top. This is 

therefore a non-deterministic or stochastic case. 

 This introduces two new concepts, namely Markov processes and Markov decision processes.  

 

Markov processes 

A stochastic process respects the Markov property if and only if the conditional probability distribution of future 

states, given past states and the present state, depends only on the present state and not on past states [18]. This is 

said to be memory-free. In other words, the probabilities of future states do not depend on past states but only on 

the present state. 

The stochastic process 0( )n nX   with values in a finite set E  is a Markov chain if 0, ,..., ,nn x x y E     ,  

 1 0 0 1( | ,..., ) ( | )n n n n n nP X y X x X x P X y X x+ += = = = = =  

 

Markov decision processes 

A Markov decision process (MDP) is a stochastic model where an agent makes decisions and the results of its 

actions are random [17].  MDPs are an extension of Markov processes. The difference is the sum of the actions 

chosen by the agent and the rewards earned by him. 

If there is only one action to be taken in each state and the rewards are equal the Markov decision process is a 

Markov chain.  

A CDM is a quadruplet <S, A,T,R> defining 

• S is a finite set of states s. 

• A is a finite set of actions a. 

• T : S × A × S → [0, 1] is a Markov transition function giving the probability of going from state s to state 

s'when action a is performed P(s,a,s'). 
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• R : S × A → R is a reward function. R(s, a) is the reward obtained by the agent when it performs action a 

from state s. 

The Bellman equation seen earlier thus becomes [18] 

'

( ) max( ( , ) ( , , ') ( '))
a

s

V s R s a P s a s V s= +   

The Q-Learning algorithm 

In artificial intelligence, more precisely in machine learning, Q-Learning is a reinforcement learning technique. This 

technique does not require any initial model of the environment. The letter Q stands for the function that measures 

the quality of an action performed in a given state of the system [19]. This learning method learns a strategy, which 

indicates which action to perform in each state of the system. It works by learning a state-action value function Q 

which determines the potential gain, i.e. the long-term reward, Q(s,a) , of choosing a certain action a in a certain 

state s by following an optimal policy [20]. When this action-state value function is known or learned by the agent, 

the optimal strategy can be constructed by selecting the maximum value action for each state, i.e. by selecting the 

action a that maximises the value Q(s,a) when the agent is in state s. The mathematical relation of this equation is 

obtained in the previous section 

'

( , ) ( , ) ( , , ') ( '))
s

Q s a R s a P s a s V s= +   

Replacing ( ')V s  by its expression, we obtain the mathematical relation of the Q-Learning algorithm 

'
'

( , ) ( , ) ( ( , , ')max ( ', '))
a

s

Q s a R s a P s a s Q s a= +   

The Robotarium 

The Robotarium, set up by the Georgia Tech Institute of Robotics and Intelligent Machines in the United States of 

America, is a swarm robotics research platform that is remotely accessible to all. It allows the remote 

implementation of algorithms on real physical robots in order to make about fifty robots collaborate as illustrated in 

the following figure: 

 

 
Fig.  4 Example of a coverage control algorithm executed on the 

Robotarium using 13 GRITSBot robots. The desired density function is 

projected onto the testbed arena in the shape of the letter R [4] 

 

The Robotarium simulation API is available in Matlab and Python. The objective of the simulator is to allow users 

to quickly prototype their distributed control algorithms and receive feedback on the feasibility of their 

implementation before sending them to be executed by the Robotarium robots. 

 

Dynamic model of Grisbot robots [5] 

 Consider a differential-drive robot in a global reference frame O with full-state  y [ ]
T

X x=   .Let

 y[ ]
T

pX x=  represent the global position of the robot. Then, consider the following output of the state defined 

by  

cos(
( )

sin( )
pS X X l

) 
= +  

 
, 
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Where 0 l R  . Geometrically,
2(.)S R  represents a point orthogonal to the wheel axis of the robot along the 

perpendicular bisector of the axis at a distance l  . the body velocity of the robot in the global frame can be modelled 

through the unicycle model 

cos( ) 0

sin( ) 0

0 1

v
X






 
  

=   
   

 

where θ is the orientation of the robot, v  and  are its linear and angular velocity, respectively. Differentiating 

(S1) with respect to time yields 

 

sin( )
( )

cos( )
PS X X l






− 
= +  

 
 

Substituting the unicycle dynamic model for pX  and io provides the desired relation 

( ) ( )l

v
S X R 



 
=  

 
, 

Where  

cos( ) sin( )
( )

sin( ) cos( )
l

l
R

l

 


 

− 
=  
 

 

   

 

RESULTS AND DISCUSSIONS 

The aim of the game is to program the robots to find and destroy a target hidden in the environment. We have a 

group of 12 Grisbots, each measuring 10cm x 10cm. They can move and communicate with each other within a 

certain radius of perception of 30cm. 

Scenario 

This is the scenario of the experiment. The 12 robots are placed in the middle of a 3.2 x 2 metre arena. A 5 cm 

target is hidden somewhere randomly in the arena. The robots do not know the location of the target and have to 

find and destroy it as quickly as possible. A robot can find the target in two different ways: Either it touches the 

target by moving over it, or another robot that knows the location of the target communicates the information to it 

(but for this to happen it must be within its perception radius). 

When a robot discovers the location of the target, it turns on its green LED. 

The target initially has an energy of 100 points. If the target's energy is reduced to 0, the mission is accomplished. 

To attack the target, a robot must: know the location of the target, have the target within its perception radius. If 

these two conditions are met, the robot attacks the target automatically. When a robot attacks the target, the target 

loses 0.3 energy points per second. This is not much, but the attacks of the robots add up. For example, if 10 

robots attack at the same time, the target loses 10 times 0.3 energy points per second - that is 3 points/second. A 

grouped attack is therefore more effective than an isolated attack. 

When a robot is attacking the target, it turns on its red LED. 

There are many solutions to perform this experiment, in this article we will implement two algorithms (centralized 

and decentralized). This experiment is carried out in the Matlab API of Robotarim available for free at 

https://github.com/robotarium/robotarium-matlab-simulator.   

The simulation parameters are contained in the table below 
Table -1 Simulation parameters 

Type Value Comment 

Time step 0.033  

Robot speed 0.2 cm/s  

Robot diameter 10 cm  

Wheel radius 1.6 cm  

Detection range 5cm Distance to the target for detection 

Attack range 50 cm Distance to the target for attacking 

Perception_range 30 cm perception range of the robots (for walls or neighbors) 

Attack_strength 0.3 Reduction of target energy for robot attacking the target 

Target_energy 100 Experiment ends when target energy is down to 0 

Max time 900s Max time of experiment 
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The global experience algorithm 

Before implementing the two strategies for making the robots collaborate, it is necessary to set up a global 

algorithm that sequentially describes the course of the experiment. In the following, we will also describe the 

algorithms of the different methods used. 

Overall, our experience can be described by the figure below 

 
Fig.  5 The overall algorithm of the experiment 

The decentralised strategy: random search 

In this strategy, the robots move autonomously and individually in order to find and destroy the target, hence the 

name decentralised strategy. The figure below shows the swarm of twelve robots each trying without any group 

strategy to find the target (represented by the red dot).  
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Fig.  6 Implementation of the decentralised random search strategy on Grishbots 

However, each agent collaborates with the others by communicating its position or the position of the target if it 

finds it. This communication is possible if they are within the agent's perception radius.  

 
Fig.  7 The robots accumulate around the target to destroy it 

After a time of 49s, the robots found and destroyed the target. 

 We can illustrate this strategy with the following algorithm 
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Fig. 8 Algorithm illustrating the decentralised strategy 

The centralised strategy: cluster attack 

In this strategy, instead of moving the robots randomly and autonomously, we define a path that they will take in 

order to cover the arena as much as possible and try to find the target quickly. So the Grishbots will split into 

groups and cover the arena from one end to the other. 

The figure below illustrates this behaviour  

 
Fig.  9 The robots divide into 2 groups to search for the target 
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As illustrated in the figure above, each robot moves through the arena following the direction of its nearest 

neighbour. This allows our agents to stay together while maintaining a certain distance between them to avoid 

collisions. 

 
Fig. 10 The robots attack the target after having spotted it 

The figure above shows the time taken by the robots to destroy the target, 136s.  

We can illustrate this strategy with the following algorithm 

 
Fig. 11 Cluster attack algorithm 
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Comparison of the 2 methods 

To compare the two methods, we carried out a series of forty measurements in order to take the time taken by the 

robots in each of them to destroy the target. The table below shows the results of these series 
Table -2 Values in seconds of the time taken by the robots for the centralized method 

centralized 
88 80 86 62 33 77 56 57 40 45 61 36 42 40 40 40 99 53 69 49 

41 61 37 92 111 37 205 31 42 98 54 72 94 102 67 250 177 70 39 45 

 
Table -3 Values in seconds of the time taken by the robots for the decentralised method 

Decentralized 

70 112 94 49 80 69 88 72 77 107 82 89 106 91 313 85 82 

94 77 96 54 84 71 97 110 130 75 166 109 159 135 215 197 108 

31 131 121 90 91 59            

 

The static parameters of these two series have been calculated and are summarised in the table below 
Table -4 Statistical parameters of the data series 

 Min Max Me x    Q1 Q3 

Centralized 31 250 61 72.7 45.56 41.75 86.5 

Decentralized 31 313 91 104.25 49.46 77 110.5 

Where x  represents the Mean,  the standard deviation, Q 1   the first quartile and Q3 the third quartile. 

  

 

 
Fig.  12 Evolutionary curve of the times taken by the robots during the tests 

The statistical data contained in Table 4 reveal that for the forty measurements carried out under the same 

conditions the minimum times of the two series are identical; however, the maximum time of the first is 250s 

while that of the second is 310s. Moreover, by observing the average values, we observe that in the centralised 

strategy, the robots take an average time of 72.7s to destroy the target, which is much less than the 104.25s taken 

in the decentralised strategy. This result is further supported by the comparison of the dispersion indicators Q 1 and 

Q3 . We observe that 25% of the times taken are less than or equal to 41.75s and 75% are less than or equal to 

86.5s for the first strategy. For the second strategy, 25% of the times taken are less than or equal to 77s and 75% 

are less than or equal to 110.5s. Finally, the comparison of standard deviations shows us that the times performed 

in the decentralised strategy are more dispersed or less homogeneous than those performed in the centralised 

strategy. 

Based on this analysis, we can conclude that for an exploration problem the centralized method offers a better 

experience than the decentralized one. The agents browse the arena faster and take less time to find a target. This 

result is even more satisfying because the surface of the arena is constant and the number of robots is known, so it 

is easier for them to cover a larger surface if they are grouped.  
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