
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(9):69-74

Research Article ISSN: 2394 - 658X

69

Salesforce Pub/Sub API: A Guide to Event-Driven Integration

Excellence

Raja Patnaik

raja.patnaik@gmail.com

ABSTRACT

The rapidly evolving field of enterprise software demands systems capable of instantaneously responding to

events at scale. This paper delves into the Salesforce Pub/Sub API, a pivotal tool for constructing event-driven

integrations within the Salesforce ecosystem. It outlines key features essential for real-time interaction,

explores the intricacies of Platform Events and Change Data Capture Events, and proposes a real-time event

monitoring strategy. It also lays out best practices and design principles for robust integrations, offers solutions

for common troubleshooting issues, and discusses measures to secure event-driven data flows. Finally, it

investigates strategies to optimize the performance of Salesforce Pub/Sub integrations. By harnessing the

capabilities of the Salesforce Pub/Sub API, developers can architect responsive, interconnected systems that

strengthen CRM efficiency and responsiveness in innovative enterprise environments. [1][2][3]

Keywords: Salesforce AppExchange, Cloud marketplace, Business applications, Customization solutions,

Independent Software Vendors, Market growth drivers, SaaS innovation, Enterprise software, User decision-

making

__

INTRODUCTION

In the digital age, event-driven architecture has become a cornerstone of responsive and adaptive business

systems. As a leading customer relationship management platform, Salesforce provides robust capabilities for

event-driven integrations through various APIs, including the Publish/Subscribe (Pub/Sub) model. This model

enables services to communicate asynchronously via events, essential for real-time data flows and automation.

Within Salesforce's ecosystem, this event-driven paradigm allows different parts of the business to stay updated

instantly with customer interactions and system changes. While the benefits of this real-time interaction are

immense, securing the event-driven data flow is equally important to protect against unauthorized access and

data breaches and ensure regulatory compliance.

Securing Salesforce event-driven data flows involves implementing best practices around authentication,

authorization, monitoring, and encryption. This ensures that the data transmitted through events is not only

efficient and responsive but also secure and trustworthy.

As companies increasingly adopt Salesforce for their CRM needs, understanding and implementing robust

security measures for event-driven architectures can make the difference between a successful and a

compromised enterprise application. This conversation revolves around securing your Salesforce event-driven

data flow effectively and ensuring the integrity and confidentiality critical in today's cybersecurity landscape.

[1][3]

UNDERSTANDING SALESFORCE PUB/SUB API

The Salesforce Pub/Sub API is designed to facilitate event-driven integrations by enabling a publish-subscribe

model within the Salesforce ecosystem. In this model, publishers generate events representing a change in data

or a specific action, and subscribers listen for these events to trigger downstream processes or workflows. The

Patnaik R Euro. J. Adv. Engg. Tech., 2021, 8(9):69-74

70

API allows for loose coupling between publishers and subscribers, ensuring each can operate independently and

scale as needed.

One of the critical components that enable the Pub/Sub functionality is the usage of Platform Events and Change

Data Capture events:

Platform Events are user-defined custom events developers can publish and subscribe to within the Salesforce

platform. These are useful for signaling application-specific events that do not necessarily correspond to data

changes in Salesforce objects.

Change Data Capture events, on the other hand, automatically publish messages when changes occur in

Salesforce records. The API provides a way to receive notifications about these changes, which is crucial for

keeping external systems in sync with Salesforce data.

Pub/Sub API is particularly beneficial for organizations that require real-time responsiveness and

synchronization across complex, distributed systems. It supports various use cases, from simple notifications to

comprehensive data replication workflows.

By leveraging the Salesforce Pub/Sub API, developers can create event-driven integrations that are more

scalable, resilient, and responsive to the dynamic needs of modern enterprise applications.

DESIGNING ROBUST INTEGRATIONS WITH SALESFORCE EVENTS

Designing robust integrations with Salesforce Events involves carefully considering a range of best practices

and design principles that ensure the integrations are secure, scalable, performant, and resilient. [11] When

designing integrations with Salesforce Events, it is essential to keep in mind the following key points:

Event Modeling: Carefully design the structure and type of events to reflect the business processes and data

changes they represent accurately. Ensure proper naming conventions, consider versioning for backward

compatibility, and specify event granularity to balance data richness with performance.

Security Practices: Implementing rigorous security measures, such as authentication and authorization of

publishers and subscribers, encryption of sensitive data, and compliance with Salesforce's security

recommendations, is not just a requirement but a valuable investment. It protects the integrity and

confidentiality of event data, ensuring your integration is robust and secure.

Scalability Considerations: Architect your event-driven system to handle event volume and subscriber growth.

This may include using asynchronous processing techniques, implementing caching where appropriate, and

employing load-balancing strategies.

Error Handling and Resilience: This is a critical aspect of your integration's design. Developing robust error-

handling procedures, including setting up retry mechanisms, timeouts, and dead-letter queues, is essential to

manage potential delivery or processing anomalies. It ensures system reliability, even in the face of failures,

making your integration resilient and dependable.

Monitoring and Observability: Implement monitoring tools to track the health, performance, and usage of

your event-driven integrations, including measuring event throughput, latency, and error rates. This will provide

helpful information and enable you to perform preventative maintenance.

Utilize Existing Salesforce Features: Leverage Salesforce's built-in features, such as Process Builder, Apex

Triggers, and Workflow Rules, to integrate with custom Platform Events, thus enhancing the synergy between

your custom logic and Salesforce Standard functionality.

By focusing on these areas, you can create robust integrations with Salesforce Events that meet current

requirements and are adaptable enough to evolve alongside your business processes and technological

advancements.

TROUBLESHOOTING COMMON ISSUES IN SALESFORCE EVENT-DRIVEN ARCHITECTURE

Troubleshooting common issues in Salesforce event-driven architecture can be achieved by systematically

addressing the challenges unique to the Salesforce platform and its event mechanisms. [11][12] Here are some

effective strategies for resolving common issues:

Platform Event Delivery Failures: Implement retry mechanisms to ensure that subscribers handle event

delivery failures. Salesforce provides replay functionality for events, allowing subscribers to request events from

a specified replay ID or time marker.

Patnaik R Euro. J. Adv. Engg. Tech., 2021, 8(9):69-74

71

Event Data Volume: Salesforce limits the volume of events that can be published and delivered. Monitor these

limits to avoid hitting caps that could interrupt the event flow. To reduce volume, consider batching or

summarizing events.

Trigger and Workflow Rules: Verify that Apex Triggers and Workflow Rules are optimized and do not cause

recursion or unintended process loops when Platform Events are fired, which could potentially lead to

performance degradation or limit consumption.

Change Data Capture Limitations: CDC events do not capture every type of change in Salesforce. Be aware

of what changes are not published and plan accordingly, ensuring all necessary data mutations have

corresponding event flows.

Streaming API Considerations: The Streaming API has limitations on the number of concurrent clients and

the rate of events. Monitor these limitations and consider alternative strategies, such as polling, if you approach

these limits.

CometD and Long Polling Limitations: When using CometD to subscribe to events, be conscious of time-out

settings and the behavior of long polling connections. Properly configure your subscriber clients to handle time-

outs and reconnections.

Governance Limits: Salesforce has limits to ensure one customer does not monopolize shared resources. Be

aware of your organization's limits on event publishing and consumption to avoid unexpected interruptions.

Error Handling in Subscribers: Ensure that subscriber services have robust error handling to address issues

such as invalid event data and downstream service unavailability without blocking the processing of subsequent

events.

Data Skew: In scenarios involving high data volumes or rapid data changes, be cautious of data skew, which

can cause performance issues. Monitor the distribution of event processing to ensure system balance.

Incorporating comprehensive error handling, limit monitoring, and well-planned architecture strategies will help

mitigate common issues associated with Salesforce's event-driven architecture, leading to a more reliable and

efficient system. [13]

SECURING YOUR SALESFORCE EVENT-DRIVEN DATA FLOW

Securing your Salesforce event-driven data flow is critical to protect sensitive data and ensure that business

processes are not compromised. Here are measures and best practices to safeguard your event-driven

architecture in Salesforce:

Authentication and Authorization: Utilize Salesforce's robust security model, including OAuth protocols, to

authenticate external applications. Make sure permissions are set correctly to limit access to events for

publishing and subscribing based on user roles and profiles.

Field-Level Security: Apply field-level encryption for sensitive data within events, ensuring that data is

protected at rest and in transit. Salesforce offers field-level encryption, which customers can manage based on

their security requirements.

Monitoring and Auditing: Regularly monitor and audit event traffic using Salesforce's built-in tools or third-

party security software. It is crucial to monitor the publication, subscription, and handling of events to quickly

detect and respond to any unauthorized access or anomalies.

Secure Transport: Use secure and encrypted connections when transmitting event data over the network.

Ensure that HTTPS protocols are employed for webhooks and other integration points.

Data Masking and Anonymization: For non-production environments or when sharing data with external

systems, consider data masking or anonymization techniques to protect personal and sensitive information.

By following these security measures, organizations can significantly minimize the risk associated with their

event-driven data flows and maintain the integrity and confidentiality essential for Salesforce's event-driven

architecture. [14][15]

EXPLORING PLATFORM EVENTS IN SALESFORCE

Platform Events in Salesforce provide a powerful way to represent sales data changes in a publisher-subscriber

messaging model. They offer a flexible, high-performance messaging platform for developers to define custom

event types.

Patnaik R Euro. J. Adv. Engg. Tech., 2021, 8(9):69-74

72

When working with Platform Events, developers can create their event definitions, including the event schema

and additional metadata, to suit the specific requirements of their integration. By leveraging Platform Events,

developers can ensure disparate services and external applications can react to real-time changes within the

Salesforce ecosystem.

Platform Events also integrate seamlessly with Salesforce's robust security model, ensuring only authorized

systems and users can subscribe to or publish events. This provides a secure and reliable framework for event-

driven integrations.

Utilizing Platform Events in your Salesforce environment empowers you to build scalable and flexible event-

driven integrations that can synchronize data, automate processes, and enable real-time interaction, thus

enhancing the agility and responsiveness of your enterprise applications. [1][4][5]

Figure 1: Event Driven Architecture [8]

Figure 2: Platform Triggered flow

INTRODUCTION TO CHANGE DATA CAPTURE EVENTS

Change Data Capture in Salesforce allows developers to capture and receive real-time changes in Salesforce

data efficiently. By leveraging CDC events, developers can subscribe to changes in Salesforce records and

receive notifications when data is created, updated, deleted, or undeleted. This capability enables seamless

integration between Salesforce and external systems, ensuring data synchronization in real-time across the

ecosystem.

CDC events provide a reliable and scalable solution for capturing and processing data changes, allowing

developers to streamline business processes and enable real-time analytics. By leveraging CDC events,

organizations can gain valuable insights into their data, automate workflows, and make informed decisions. This

scalability ensures that the tool can handle large volumes of data, making it a future-proof solution for your

business needs.

Change Data Capture in Salesforce not only offers real-time capabilities but also provides a secure and efficient

method for capturing data changes. It ensures that sensitive information is protected and compliance

requirements are met. By integrating CDC events into your Salesforce environment, you can enhance the

reliability and security of your event-driven integrations while enabling seamless data synchronization across

disparate systems. This security feature is a crucial aspect of the tool, instilling confidence in developers about

its ability to protect sensitive information.

Change Data Capture events' robust features and capabilities make it an essential tool for building responsive

and resilient event-driven integrations within the Salesforce ecosystem. By seamlessly capturing and processing

Patnaik R Euro. J. Adv. Engg. Tech., 2021, 8(9):69-74

73

real-time data changes, CDC events empower organizations to create dynamic and efficient workflows that

drive business success and innovation. [1][6]

Figure 3: Change Data Capture Architecture [9]

Figure 4: Change Data Capture [10]

Figure 5: Change Data Capture Setup in Salesforce

BEST PRACTICES FOR IMPLEMENTING SALESFORCE PUB/SUB API

Planning carefully and following best practices when implementing the Salesforce Pub/Sub API in your

applications is critical to provide optimal performance, reliability, and security. Here are some best practices to

consider when integrating Salesforce Pub/Sub API:

1. Effective Event Modeling: Before implementing the Pub/Sub API, it is essential to carefully design

the event model to ensure it captures all the necessary data and triggers the appropriate actions. A well-

defined event model lays the foundation for efficient event-driven integrations.

2. Security Considerations: Robust security measures are crucial for safeguarding the integrity and

confidentiality of event data while implementing the Pub/Sub API. This includes authenticating and

authorizing publishers and subscribers, implementing encryption for sensitive data, and adhering to

Salesforce's security best practices.

3. Scalability and Performance Optimization: Consider the scalability implications of your event-

driven architecture and optimize it to handle increasing loads efficiently. This may involve

asynchronous processing, caching mechanisms, and load balancing to ensure the system can scale with

growing event volumes.

Patnaik R Euro. J. Adv. Engg. Tech., 2021, 8(9):69-74

74

4. Error Handling and Resilience: Implement robust error handling mechanisms for potential event

delivery or processing failures. By designing resilient components and incorporating retry strategies,

you can ensure that your event-driven integrations remain operational under adverse conditions.

5. Monitoring and Analytics: It is essential to establish comprehensive monitoring and analytics tools to

keep track of the performance and health of your event-driven integrations. This includes monitoring

event throughput, latency, and error rates and gaining insights into subscriber behavior and event

patterns.

By following these best practices, you can effectively harness the power of the Salesforce Pub/Sub API to create

robust, scalable, and secure event-driven integrations that drive real-time data synchronization, process

automation, and innovative applications within the Salesforce ecosystem. [2]

CONCLUSION

In conclusion, the Salesforce Pub/Sub API provides a robust framework for creating event-driven integrations

essential for the real-time, responsive workflows demanded in today's fast-paced business environment. By

leveraging the publish/subscribe model, organizations can decouple systems and services, allowing for greater

scalability, flexibility, and maintainability of their integrations.

Developers have a crucial role in utilizing the essential features of Salesforce's event-driven integrations. These

features, including real-time interactions, flow control, and publish acknowledgments, empower developers to

build resilient and dynamic systems. The use of Change Data Capture events and Platform Events ensures

immediate and meaningful responses to data changes, maintaining synchronization with Salesforce in external

systems.

Maximizing the benefits of the Pub/Sub API requires adherence to best practices. This includes effective event

modeling, security considerations, and performance optimizations. By implementing robust error handling and

monitoring capabilities, organizations can achieve high levels of operational reliability and gain valuable insight

into their event-driven architectures. [1][7]

Ultimately, the Salesforce Pub/Sub API is not just a technical solution but a strategic enabler that allows

businesses to innovate and adapt to evolving customer needs and market trends. By harnessing this capability,

developers can contribute to creating truly interconnected and intelligent enterprise systems that facilitate

seamless user experiences and drive business growth.

REFERENCES

[1]. "Pub/Sub API: Building Event-Driven Integrations Just Got Even Easier". 2021

[2]. "Reactive Programming with Salesforce Data". 2019

[3]. "Platform Events EventBus: A New Chapter in the Never Ending Saga of Bulkification". 2018

[4]. "Event-Driven Salesforce Change Data Capture". 2020

[5]. I. Szegedi, "Salesforce Change Data Capture Streaming Data with Kafka and Snowflake Data

Warehouse". 2020

[6]. "Salesforce Trailhead Understand Change Data Capture". 2021

[7]. M. McLarty, "The Advantages of API-Led Connectivity and the Application Network Effect". 2019

[8]. “Salesforce - https://developer.salesforce.com/docs/atlas.en-

us.platform_events.meta/platform_events/platform_events_intro_architecture.htm” 2021

[9]. “Salesforce Trailhead - https://trailhead.salesforce.com/content/learn/modules/change-data-

capture/understand-change-data-capture” 2020

[10]. ”Salesforce CDC - https://architect.salesforce.com/diagrams/design-patterns/salesforce-streaming-

events” 2021

[11]. “Building a Scalable Event Pipeline with Heroku and Salesforce” 2019

[12]. "Event-Driven App Architecture on The Customer 360 Platform". 2020

[13]. "Event-driven SOA". 2009

[14]. R. Vezzani and R. Cucchiara, "Event driven software architecture for multi-camera and distributed

surveillance research systems". 2010

[15]. "7 best practices for securing your cloud service". 2017

