
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(8):66-70

Research Article ISSN: 2394 - 658X

66

Optimistic Workload Configuration of Parallel Matrices On CPU

Apoorva Reddy Proddutoori

San Diego
Email: apoorvaproddutoori@gmail.com

ABSTRACT

This study compares and uses different feature parallelization techniques Fast Fourier Transform (FFT) and

Discrete Wavelet Transform (DWT) for classification of matrices. Convolutional Neural Network (CNN) is

used to determine the classifications. In the classification, CNN is a unique technique that can be effectively

used as a classifier. This study helps to extract features in the most efficient way with less computing time in

real life. The framework provides comprehensive and flexible APIs that enable efficient implementation of

multi-threaded applications. To meet the real-time performance requirements of these security applications, it is

imperative to develop a fast parallelization technique for the algorithm. In this paper, we introduce a new

memory-efficient parallelization technique that efficiently places and stores input text data and reference data

in an on-chip shared memory and CPU texture cache. For better performance while reducing the power ratio,

we extend the parallelization technology to support other major cores of the SOC. OpenCL, a heterogeneous

parallel programming model, is used to communicate between CPU and other macro blocks.

Key words: FFT, DWT, CNN, framework, parallelization, classifier.

__

INTRODUCTION

Recently, multi utility microprocessors and micro architectures have become increasingly resourceful in

advanced technology systems like artificial intelligence, augmented reality, gaming, video, and signal/image

processing. A multiprocessing architectural system consists of at least two processing units accessing combined

memory and diverse hardware macro units on the SoC depending upon the target requirements. As perse, a

physical CPU is just a processor by itself efficiently handling serial and parallel workload data transmission for

a variegate of applications.

To take full advantage of the available parallel matrices computing power, the algorithm is divided into an

optimal number of threads and then tasks. A task is a simple set of threads that can run in the kernel. Tasks can

be cached and scheduled between hardware threads. Task allocation is a complex task and requires

optimization. Opposingforces are at work: too many partitions add extraand too few partitions waste CPUs,

hence the need for optimal partitioning. The parallel feature extraction andclassification algorithm is

divided into two main parts: Parallel feature extraction and parallel classification. Three

different \techniques, Fast Fourier Transform (FFT), and Discrete Wavelet Transform (DWT) are compared to

find the best information features. For classification, a parallel computational neural network (CNN) has

been proposed as an efficient workload classification. The CNN approach combines a feedforward neural

network and a genetic algorithm (GA). GA has proven to be very effective in practicefor optimizing functions

and can efficiently search large and complex spaces to find a nearly global optimum. The search space

associated with the neural network weight selection problem is an ideal GA usage target. The extracted features

are used as inputs to the CNN to train the network. The training part of CNN is used to train the neural

networkdata for a given number of iterations to produce the best chromosome.

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(8):66-70

67

Figure 1: Independent CPU Operation

One of the main problems in parallel matrices computation is that the size of the sparse parallel matrix is very

large Developing a parallel matrix subarray is very expensive Some elements of the parallel matrices are

difficult to calculate or reconstruct, while others are not. Different parts of the parallel matrix can be calculated

using different methods, so there are two ways One way is to precompute a small array, at the beginning. This

option is useful for some parts of the parallel matrices that are difficult to reproduce. Taking this approach is

limited by CPU memory Another approach is to calculate the elements of the parallel matrices constant matrix

on the fly. This option is useful for some parts of the parallel matrices that are easy to rebuild. In this work, we

implement an efficient and robust scheme tostore parallel matrices slot arrays on the CPU and GPU. The

proposed format compresses small arrays to save a lot of CPU memory and GPU memory.

PARALLEL MATRIX SCHEDULER ALGORITHM

The calculation for parallel matrix includes extraction and classification is partitioned into primary

computational parts, highlighting extraction and development of the computational neural network arrangement

(CNN). Each portion is encouraged to be partitioned into sub-parts and each sub-part is isolated into ideal

number of steps, to discover the best parallel matrix for parallelism. These steps ought to be divided, mapped,

and planned on a multicore so that they can execute the whole calculation productively. Noting the limitations

of current CPU-based parallel matrix research, this paper explains a CPU-based parallel matrix approach by

fully incorporating parallelization and sub-parallel optimization algorithms.

A. Parallel Scheduling

First, parallel scheduling can be performed either with memory or workload. Indulging deeper into memory

architecture parallelization is by developing a symmetric multi-matrix processing (SMMP) architecture, Using

SMMP, various parallel matrices of the CPU are joined together forming a consolidated gigantic memory unit

leading to single instance of the operating system, proving scope for working as unified processor or multiple

processors.

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(8):66-70

68

Figure 2: Parallel Matrix Workload

In the computational approach to parallel matrix programming, the simplest and easiest way to implement

parallel matrix applications is to use multi-matrix threading. All real programming libraries are multithreading

capable and provide mechanisms to automatically manage multiple threads on different cores. Open multi-

matrix threading is an API for the shared memory model. It is one of the most powerful high-level parallel

languages.

Secondly, parallelization can be exploited at workload level, almost all image-processing algorithms use

grayscale as input. However, almost all hardware video sources provide images in RGB format. Hence, the

grayscale transform is a very popular transformation for workload parallel matrices.

B. Parallel Concurrent Scheduling

Figure 3: Parallel Concurrent Execution

The algorithm necessarily implicate that the multi-matrix threads would all be running at the same instant, but

concurrency algorithm can be initiated on multiple single core’s of the CPU. Benefiting from this idea, an

algorithm for parallel concurrency scheduling has been developed to potentially utilize multi-threading multi-

core CPUs processors. Compared to single core CPU, which cannot execute and parallelize the matrices for

execution at the same time, multi-core CPUs have an advantage of allocating multi-threaded parallel matrix in

memory and distribute the workload decomposition knowledgeably. Therefore, introducing the concept of

parallel concurrency would reduce the latency of the CPU and processor higher workload.

MAPPING THE SCHEDULER

A. Parallel Fast Fourier Transform

When parallelizing the FFT algorithm, the recursive approach of the FFT algorithm is better to implement.

However, there are two reasons for using the crossover method in the FFT algorithm. First, the inverted version

of the FFT algorithm can perform fewer arithmetic calculations. Second, it is easier to generate a parallel FFT

algorithm than any sequential algorithm. We already know that the output index is a bit-by-bit inversion of the

input index. So, use this idea to rearrange the parallel matrix alignment.

From figure 4, top of the sequence is considered to be the input with n variables being fed into the parallel

matrix, while bottom sequence of the matrix is considered to be the output. The gray block depicts each of the

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(8):66-70

69

matrix running in parallel. There are three statements for a parallel matrix FFT algorithm. Considering n be the

number of input elements and p be the number of processes running in parallel on the CPU core. First, the

processes modifies the input sequence and reorders the indexes. In the second statement, the processes perform

the first log n - log p iterations of the FFT, performing the necessary convolutional factors on the complex

numbers. In the third statement, the processes perform the final protocols of the FFT and exchange values

between the dimensions of the hypercube with the partner. Thus, each process directs n/p elements of the input

sequence a. There are protocol p iterations in which each process exchanges n/p values with a partner process.

The time complexity of the general communication is O((n/p) log p) and the computational complexity of the

parallel algorithm is O(n log n/p).

Figure 4: Parallel FFT Technique

B. Discrete Wavelet Transform

Discrete Wavelet Transform have been one of the vital flag handling advancements within the parallel matrix,

particularly for applications such as time, power, bandwidth and frequency investigation, information

compression, division and vision. In spite of the fact that a few proficient executions of wavelet changes have

been inferred, their computational burden is still significant. The paper depicts nonexclusive parallel matrix

usage of wavelet changes, based on the pipeline processor cultivating strategy, which have the potential to attain

real-time execution. Comes about appear that the parallel usage of the oversampled wavelet change

accomplishes for all intents and purposes direct speedup, whereas the parallel matrix execution of the discrete

wavelet change (DWT) too outflanks the successive adaptation, given that the channel arrange is huge. The

DWT parallelization execution moves forward with expanding information length and channel arrange, whereas

the frequency-domain usage execution is autonomous of wavelet channel arrange. Parallel matrix pipeline

executions are right now reasonable for handling multidimensional pictures with information length at slightest

480 pixels.

CONCLUSION

Parallel extraction and parallel clustering implemented on single and multiple cores. We extract salient features

using three different feature extraction techniques (FFT and DWT). CNN was used for classification. With more

iterations the algorithm uses more available multicore resources compared to fewer iterations. We can see that

the parallel algorithms for all feature extraction methods are optimized faster on consumer-level multi-core

computers compared to single-core systems. Algorithmic calculations using DWT feature extraction have also

been found to provide higher accuracy than FFT and MFCC. DWT provides both the nature and timing of

signals, which can provide a more accurate representation of global signals.

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(8):66-70

70

FUTURE SCOPE

In future work, this algorithm will be implemented on many different systems, and the results will be compared

to systems on the same chip. Furthermore, Computer vision applications based on face recognition are highly

non-trivial tasks that are intrinsically parallel. In this paper, we investigated the software parallelism and

performance of the parallel matrix algorithm optimizing directives for task parallelism and instructions for data

parallelism. To further improve the performance/energy criterion.

REFERENCES

[1]. Mohammed Mahmoud, Mark Hoffmann, Hassan Reza, “An Efficient Storage Format for Storing

Configuration Interaction Sparse Matrices on CPU/GPU, International Conference on Computational

Science and Computational Intelligence, IEEE Xplore, August 2017

[2]. Mohammad Wadood Majid, Golrokh Mizaei, Mohsin M. Jamali, “Parallelization of Feature Extraction

Techniques on Consumer–Level Multicore System”, IEEE, February 2012

[3]. Nhat-Phuong Tran, Myungho Lee, Sugwon Hong, Minho Shin, “Memory Efficient Parallelization for

Aho-Corasick Algorithm on a GPU”, IEEE 14th International Conference on High Performance

Computing and Communications, 2012

[4]. Agnes Ghorbel, Nader Ben Amor and Mohamed lallouli, “Towards a parallelization and performance

optimization of Viola and Jones algorithm in heterogeneous CPU -GPU mobile system”, IEEE, May

2015

[5]. Xueneng Su, Chuan He, Tianqi Liu, Lei Wu, “Full Parallel Power Flow Solution: A GPU-CPU-Based

Vectorization Parallelization and Sparse Techniques for Newton–Raphson Implementation”, IEEE

Transactions on Smart Grid, Vol. 11, No. 3, May 2020

[6]. https://jenkov.com/tutorials/java-concurrency/concurrency-vs-parallelism.html

[7]. https://blog.terramate.io/how-to-use-multithreading-and-multiprocessing-a-beginners-guide-to-parallel-

and-concurrent-a69b9dd21e9d#608f

https://jenkov.com/tutorials/java-concurrency/concurrency-vs-parallelism.html
https://blog.terramate.io/how-to-use-multithreading-and-multiprocessing-a-beginners-guide-to-parallel-and-concurrent-a69b9dd21e9d#608f
https://blog.terramate.io/how-to-use-multithreading-and-multiprocessing-a-beginners-guide-to-parallel-and-concurrent-a69b9dd21e9d#608f

