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ABSTRACT 

This study compares and uses different feature parallelization techniques Fast Fourier Transform (FFT) and 

Discrete Wavelet Transform (DWT) for classification of matrices. Convolutional Neural Network (CNN) is 

used to determine the classifications. In the classification, CNN is a unique technique that can be effectively 

used as a classifier. This study helps to extract features in the most efficient way with less computing time in 

real life. The framework provides comprehensive and flexible APIs that enable efficient implementation of 

multi-threaded applications. To meet the real-time performance requirements of these security applications, it is 

imperative to develop a fast parallelization technique for the algorithm. In this paper, we introduce a new 

memory-efficient parallelization technique that efficiently places and stores input text data and reference data 

in an on-chip shared memory and CPU texture cache. For better performance while reducing the power ratio, 

we extend the parallelization technology to support other major cores of the SOC. OpenCL, a heterogeneous 

parallel programming model, is used to communicate between CPU and other macro blocks. 
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INTRODUCTION 

Recently, multi utility microprocessors and micro architectures have become increasingly resourceful in 

advanced technology systems like artificial intelligence, augmented reality, gaming, video, and signal/image 

processing. A multiprocessing architectural system consists of at least two processing units accessing combined 

memory and diverse hardware macro units on the SoC depending upon the target requirements. As perse, a 

physical CPU is just a processor by itself efficiently handling serial and parallel workload data transmission for 

a variegate of applications. 

To take full advantage of the available parallel matrices computing power, the algorithm is divided into an 

optimal number of threads and then tasks. A task is a simple set of threads that can run in the kernel. Tasks can 

be cached and scheduled between hardware threads. Task allocation is a complex task and requires 

optimization. Opposingforces are at work: too many partitions add extraand too few partitions waste CPUs, 

hence the need for optimal partitioning. The parallel feature extraction andclassification algorithm is 

divided into two main parts: Parallel feature extraction and parallel classification. Three 

different \techniques, Fast Fourier Transform (FFT), and Discrete Wavelet Transform (DWT) are compared to 

find the best information features. For classification, a parallel computational neural network (CNN) has 

been proposed as an efficient workload classification. The CNN approach combines a feedforward neural 

network and a genetic algorithm (GA). GA has proven to be very effective in practicefor optimizing functions 

and can efficiently search large and complex spaces to find a nearly global optimum. The search space 

associated with the neural network weight selection problem is an ideal GA usage target. The extracted features 

are used as inputs to the CNN to train the network. The training part of CNN is used to train the neural 

networkdata for a given number of iterations to produce the best chromosome.  
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Figure 1: Independent CPU Operation 

One of the main problems in parallel matrices computation is that the size of the sparse parallel matrix is very 

large Developing a parallel matrix subarray is very expensive Some elements of the parallel matrices are 

difficult to calculate or reconstruct, while others are not. Different parts of the parallel matrix can be calculated 

using different methods, so there are two ways One way is to precompute a small array, at the beginning. This 

option is useful for some parts of the parallel matrices that are difficult to reproduce. Taking this approach is 

limited by CPU memory Another approach is to calculate the elements of the parallel matrices constant matrix 

on the fly. This option is useful for some parts of the parallel matrices that are easy to rebuild. In this work, we 

implement an efficient and robust scheme tostore parallel matrices slot arrays on the CPU and GPU. The 

proposed format compresses small arrays to save a lot of CPU memory and GPU memory. 

 

PARALLEL MATRIX SCHEDULER ALGORITHM 

The calculation for parallel matrix includes extraction and classification is partitioned into primary 

computational parts, highlighting extraction and development of the computational neural network arrangement 

(CNN). Each portion is encouraged to be partitioned into sub-parts and each sub-part is isolated into ideal 

number of steps, to discover the best parallel matrix for parallelism. These steps ought to be divided, mapped, 

and planned on a multicore so that they can execute the whole calculation productively. Noting the limitations 

of current CPU-based parallel matrix research, this paper explains a CPU-based parallel matrix approach by 

fully incorporating parallelization and sub-parallel optimization algorithms. 

 

A. Parallel Scheduling 

First, parallel scheduling can be performed either with memory or workload. Indulging deeper into memory 

architecture parallelization is by developing a symmetric multi-matrix processing (SMMP) architecture, Using 

SMMP, various parallel matrices of the CPU are joined together forming a consolidated gigantic memory unit 

leading to single instance of the operating system, proving scope for working as unified processor or multiple 

processors. 



Proddutoori AR                                                  Euro. J. Adv. Engg. Tech., 2021, 8(8):66-70 

___________________________________________________________________________ 

68 

 

 

 
Figure 2: Parallel Matrix Workload 

 

In the computational approach to parallel matrix programming, the simplest and easiest way to implement 

parallel matrix applications is to use multi-matrix threading. All real programming libraries are multithreading 

capable and provide mechanisms to automatically manage multiple threads on different cores. Open multi-

matrix threading is an API for the shared memory model. It is one of the most powerful high-level parallel 

languages. 

Secondly, parallelization can be exploited at workload level, almost all image-processing algorithms use 

grayscale as input. However, almost all hardware video sources provide images in RGB format. Hence, the 

grayscale transform is a very popular transformation for workload parallel matrices.  

 

B. Parallel Concurrent Scheduling 

 
Figure 3: Parallel Concurrent Execution 

The algorithm necessarily implicate that the multi-matrix threads would all be running at the same instant, but 

concurrency algorithm can be initiated on multiple single core’s of the CPU. Benefiting from this idea, an 

algorithm for parallel concurrency scheduling has been developed to potentially utilize multi-threading multi-

core CPUs processors. Compared to single core CPU, which cannot execute and parallelize the matrices for 

execution at the same time, multi-core CPUs have an advantage of allocating multi-threaded parallel matrix in 

memory and distribute the workload decomposition knowledgeably. Therefore, introducing the concept of 

parallel concurrency would reduce the latency of the CPU and processor higher workload. 

 

MAPPING THE SCHEDULER 

A. Parallel Fast Fourier Transform 

When parallelizing the FFT algorithm, the recursive approach of the FFT algorithm is better to implement. 

However, there are two reasons for using the crossover method in the FFT algorithm. First, the inverted version 

of the FFT algorithm can perform fewer arithmetic calculations. Second, it is easier to generate a parallel FFT 

algorithm than any sequential algorithm. We already know that the output index is a bit-by-bit inversion of the 

input index. So, use this idea to rearrange the parallel matrix alignment.  

From figure 4, top of the sequence is considered to be the input with n variables being fed into the parallel 

matrix, while bottom sequence of the matrix is considered to be the output. The gray block depicts each of the 
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matrix running in parallel. There are three statements for a parallel matrix FFT algorithm. Considering n be the 

number of input elements and p be the number of processes running in parallel on the CPU core. First, the 

processes modifies the input sequence and reorders the indexes. In the second statement, the processes perform 

the first log n - log p iterations of the FFT, performing the necessary convolutional factors on the complex 

numbers. In the third statement, the processes perform the final protocols of the FFT and exchange values 

between the dimensions of the hypercube with the partner. Thus, each process directs n/p elements of the input 

sequence a. There are protocol p iterations in which each process exchanges n/p values with a partner process. 

The time complexity of the general communication is O((n/p) log p) and the computational complexity of the 

parallel algorithm is O(n log n/p). 

 
Figure 4: Parallel FFT Technique 

 

B. Discrete Wavelet Transform 

Discrete Wavelet Transform have been one of the vital flag handling advancements within the parallel matrix, 

particularly for applications such as time, power, bandwidth and frequency investigation, information 

compression, division and vision. In spite of the fact that a few proficient executions of wavelet changes have 

been inferred, their computational burden is still significant. The paper depicts nonexclusive parallel matrix 

usage of wavelet changes, based on the pipeline processor cultivating strategy, which have the potential to attain 

real-time execution. Comes about appear that the parallel usage of the oversampled wavelet change 

accomplishes for all intents and purposes direct speedup, whereas the parallel matrix execution of the discrete 

wavelet change (DWT) too outflanks the successive adaptation, given that the channel arrange is huge. The 

DWT parallelization execution moves forward with expanding information length and channel arrange, whereas 

the frequency-domain usage execution is autonomous of wavelet channel arrange. Parallel matrix pipeline 

executions are right now reasonable for handling multidimensional pictures with information length at slightest 

480 pixels. 

 

CONCLUSION 

Parallel extraction and parallel clustering implemented on single and multiple cores. We extract salient features 

using three different feature extraction techniques (FFT and DWT). CNN was used for classification. With more 

iterations the algorithm uses more available multicore resources compared to fewer iterations. We can see that 

the parallel algorithms for all feature extraction methods are optimized faster on consumer-level multi-core 

computers compared to single-core systems. Algorithmic calculations using DWT feature extraction have also 

been found to provide higher accuracy than FFT and MFCC. DWT provides both the nature and timing of 

signals, which can provide a more accurate representation of global signals. 
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FUTURE SCOPE 

In future work, this algorithm will be implemented on many different systems, and the results will be compared 

to systems on the same chip. Furthermore, Computer vision applications based on face recognition are highly 

non-trivial tasks that are intrinsically parallel. In this paper, we investigated the software parallelism and 

performance of the parallel matrix algorithm optimizing directives for task parallelism and instructions for data 

parallelism. To further improve the performance/energy criterion. 
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