
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(7):64-71

Research Article ISSN: 2394 - 658X

64

Enhancing Security in Containerized Environments: A Review of

Vulnerability Threats, Risks, Detection and Mitigation Strategies

Arun Pandiyan Perumal

Systems Integration Advisor, NTT DATA Services

*arun4pap@gmail.com

ABSTRACT

Containerization has become a cornerstone of modern IT infrastructure, providing a lightweight and efficient

alternative to traditional virtualization for deploying applications. With its widespread adoption across various

industries, containerization has become critical to business operations and service delivery. However, the

benefits of containerization are shadowed by the prevalence of security vulnerabilities, which pose significant

risks to data integrity and system reliability. This study is motivated by the increasing reliance on containerized

solutions and the concurrent escalation of security challenges that necessitate a comprehensive understanding

of the vulnerabilities and the development of vigorous countermeasures. This study aimed to systematically

identify and categorize vulnerability threats in containerized environments, assess the associated risks, evaluate

existing detection mechanisms, and review current mitigation strategies to enhance security postures. The

methodological approach comprises a systematic selection of sources, analytical categorization of vulnerability

findings, and the application of tools and techniques for improved security. The results revealed a spectrum of

vulnerability threats with diverse implications for system and data integrity in containerized environments.

Detection methodologies were evaluated, with an emphasis on their efficacy and inherent limitations.

Mitigation strategies were outlined, highlighting best practices and emphasizing both preventative and

responsive measures. This study contributes to the field of technology infrastructure security in cloud and on-

premises infrastructures by offering a holistic overview of security concerns in containerized systems,

identifying emerging challenges, and suggesting avenues for future research. It underscores the criticality of

enhancing security in containerized environments and outlines the potential implications of the study's findings

for the development of robust security practices.

Key words: Containerized Environments, Container Security, Vulnerability Threats, Risk Assessment, Detection

__

INTRODUCTION

In the dynamic landscape of software development and deployment, containerization has emerged as an

indispensable tool within the realm of DevOps and microservices architectures. It enables developers to package

applications into isolated environments known as containers. Containers offer a lightweight alternative to

traditional virtualization by encapsulating applications and their dependencies into a single runnable unit of

software, ensuring consistency across multiple computing environments [1][2]. They facilitate seamless

integration into microservices architectures, where applications are decomposed into smaller, loosely coupled

services, thereby enhancing development speed and operational efficiency.

Despite the numerous advantages of containerization, it introduces unique security challenges that differ from

those present in traditional virtualization paradigms. Containers, often sharing the same operating system kernel,

can lead to a larger attack surface if not properly managed and isolated. Common vulnerabilities in

containerized environments stem from various sources, including container images with outdated or insecure

software, misconfigured network settings, inadequate access controls, image repositories, runtime environments,

etc. The potential risks and threats arising from these vulnerabilities are manifold, with security breaches

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

65

capable of compromising sensitive data, disrupting services, and undermining the integrity of an organization's

infrastructure [6].

The consequences of security breaches in containerized infrastructure can be profound, impacting the

confidentiality, integrity, and availability of critical systems and data. The transient nature of containers often

leads to a rapidly changing security posture, rendering traditional monitoring and detection methodologies less

effective. The need to adapt to the nuances of containerized systems challenges the implementation of effective

mitigation strategies, necessitating a tailored approach to security [5].

The primary objectives of this paper are to identify and categorize the various vulnerability threats, assess the

associated risks, evaluate the effectiveness of current threat detection methodologies, and explore various

mitigation strategies and best practices. Methodologically, this paper employs a systematic literature review,

adhering to stringent criteria for source selection to ensure relevance and rigor. This study has significant

implications for advancing security practices within containerized environments by consolidating and analyzing

existing knowledge into a coherent narrative. It seeks to fill research gaps in current research and practice

concerning container security. By providing a synthesis of prevalent threats, risks, detection methodologies, and

mitigation tactics, the study equips practitioners and organizations with the insights needed to adopt

containerization positively and enhance the security of their deployments.

LITERATURE REVIEW

Containerization, epitomized by Docker and orchestrated by systems like Kubernetes, offers significant

advantages over traditional deployment models, including improved scalability, resource efficiency, and

developer productivity [3]. Containers provide a level of abstraction that allows for the isolation of applications

with their dependencies, making deployments more consistent across different environments. However, despite

these benefits, containerized environments are susceptible to various security threats and vulnerabilities.

Containers share the host OS kernel, leading to potential attack surfaces and resource abuses. Furthermore,

container images and registries can become vectors for distributing malicious software if not adequately secured

[4]. This literature review aims to synthesize existing research on the security challenges in containerized

environments, focusing on vulnerability threats, risks, detection mechanisms, and mitigation strategies.

Container security vulnerabilities can be broadly classified into system vulnerabilities, runtime vulnerabilities,

image vulnerabilities, orchestration vulnerabilities, and configuration vulnerabilities. This classification aids in

understanding the intricate nature of threats faced by containerized applications. Some of the most prevalent

vulnerabilities include the use of nonverified images, which can lead to the deployment of containers with

embedded security flaws. Other common vulnerabilities encompass improper isolation between containers,

leading to possible container escape scenarios. Vulnerabilities may arise from external actors exploiting known

weaknesses or internal factors such as developer errors or lack of security practices [4]. Case studies, such as the

breach of Docker Hub, which led to the exposure of sensitive data, illustrate real-world implications. The impact

of these vulnerabilities can lead to critical security breaches, such as unauthorized access, data leakage, and

service disruptions.

The risks associated with container vulnerabilities are multifaceted and can have severe consequences for

businesses. Quantitative studies often use risk matrices to evaluate the likelihood and impact of security threats

in containerized environments. The risk analysis considers the impact on businesses, including potential

downtime, data breaches, and loss of customer trust. The implications for businesses are explored, noting that

operational, reputational, and financial consequences can be severe, with case studies illustrating these points

[6]. Compliance and legal risks are considered, with reference to regulations such as GDPR and their impact on

container security practices.

Existing vulnerability detection techniques range from static analysis tools like Clair and Anchore to dynamic

scanning with Sysdig and Falco. The effectiveness and challenges of these techniques vary, with issues such as

false positives and resource constraints present significant obstacles to accurate vulnerability detection [4].

Technological advancements continue to enhance the capabilities of detection methods, with machine learning

and AI being integrated to improve accuracy. Emerging tools leveraging distributed tracing and behavioral

analysis are redefining the capabilities of detection systems.

Effective vulnerability management involves a combination of practices, including regular patch management,

secure configuration controls, and adherence to security best practices [7]. Container-specific security practices,

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

66

such as secure image creation, orchestration security with Kubernetes, and the implementation of network

policies, bolster the overall security posture. Frameworks and standards like CIS Benchmarks and NIST

guidelines help organizations implement robust security measures [12]. Challenges in implementing mitigation

strategies often involve balancing security with performance and compatibility. Case studies from industry

leaders demonstrate how strong mitigation strategies can be successfully applied to counteract threats.

The evolving threat landscape in containerized environments poses several challenges, including the need for

continuous monitoring, dynamic threat analysis, and security incorporation into continuous integration and

deployment pipelines. The literature provides a foundation for securing containerized systems and highlights the

importance of continuous security assessment and adaptation. As the technology matures, so must the security

strategies that protect containerized applications from emerging threats.

VULNERABILITY THREATS AND ASSOCIATED RISKS IN CONTAINERIZED SYSTEMS

Vulnerability threats in containerized environments represent the potential weaknesses or security gaps that

malicious actors can exploit to compromise the integrity, confidentiality, or availability of container-based

applications and services [8][9]. Given the shared nature and dynamic orchestration of containerized

infrastructure, which involves encapsulating applications with their necessary components to run consistently

across various computing environments, these vulnerabilities can emerge from multiple sources and have

distinct implications compared to traditional, non-containerized infrastructures.

The types of vulnerability threats commonly found in containerized environments are [4],

A. Image Vulnerabilities

Container images serve as the blueprint for creating containers. If these images include outdated software or

libraries with known vulnerabilities, attackers can exploit them. These vulnerabilities can be present in the

application code, the base image, or third-party libraries and dependencies included within the image. It is

crucial to continuously scan and update container images to patch any known vulnerabilities [14].

B. Misconfigurations:

Misconfiguration of containers or the orchestration platform can lead to significant security risks. This includes

exposing unnecessary ports to the public, inappropriate user privileges within containers, or default

configurations that enforce frail security practices [10].

C. Container Escape:

This vulnerability allows an attacker to gain access to the host machine from within a container, effectively

escaping the isolation that containers are supposed to provide. Kernel exploits, such as privilege escalation or

container breakout attacks, can lead to a compromised host.

D. Orchestration Layer Vulnerabilities:

Container orchestration platforms like Kubernetes manage the deployment, networking, and scaling of

containers. Vulnerabilities within the orchestration layer can lead to unauthorized access, denial-of-service

attacks, or the compromise of entire container clusters [11].

E. Compromised Secrets:

Containers often require access to sensitive information such as passwords, tokens, or API keys. If these secrets

are not adequately managed and secured, they can be exposed or stolen, leading to further environmental

exploitation.

F. Insecure Networking:

Networking-related vulnerabilities can arise from improper network configurations, such as unsecured

container-to-container communication channels or publicly exposed ports, leading to unauthorized access or

data interception.

G. Dependency Vulnerabilities:

Dependencies such as libraries and frameworks used in containerized applications can contain vulnerabilities

that may be exploited if they are not regularly updated to their secure versions.

H. Insecure Storage:

Containers often need to persist data, and storage vulnerabilities, such as insecure volume mounts or access to

sensitive data, can lead to data leaks or corruption.

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

67

I. Supply Chain Attacks:

These attacks target the software supply chain, compromising the integrity of container images by injecting

malicious code during the development or distribution phases.

The analysis of container vulnerabilities highlights the multifaceted nature of threats in containerized systems

and underscores the critical need for stringent security policies. Security should be integrated throughout the

container lifecycle, including image creation, deployment, runtime, and orchestration. To effectively manage

vulnerability threats in containerized environments, organizations must employ a multi-layered security

approach that encompasses both preventive and detective controls.

RISK ASSESSMENT IN CONTAINERIZED ENVIRONMENTS

Risk assessment in containerized environments is a critical practice that ensures the security and resilience of

applications deployed using containers [6][10]. The methodologies for identifying and prioritizing risks in

containerized environments involve several steps:

A. Threat Modeling:

This method involves identifying potential threats specific to containerized environments, such as image

vulnerabilities, container escape, insecure configurations, and compromised container registries. Tools like

STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of

Privilege) can be used to identify threats systematically.

B. Risk Matrices:

A risk matrix helps to categorize and prioritize risks based on their likelihood and impact, offering a visual

representation that is easy to understand and act upon.

C. Vulnerability Scanning and Analysis:

Automated tools scan container images and configurations for known vulnerabilities, misconfigurations, and

deviations from best practices. This method helps identify vulnerabilities early in the development lifecycle.

D. Layered Approach:

Containers operate within layers, including the container runtime, the orchestration layer, and the underlying

host OS. Each layer is assessed for vulnerabilities and misconfigurations

Metrics commonly used to evaluate risk severity in containerized environments include:

A. Common Vulnerability Scoring System (CVSS):

It provides a standardized way to capture the principal characteristics of a vulnerability and produce a numerical

score reflecting its severity.

B. Attack Surface Area:

Measures the total number of different points where an unauthorized user can try to enter data or extract data

from an environment.

C. Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR):

These metrics help quantify the effectiveness of an organization's capability to detect and respond to security

incidents within their containerized deployments.

The risk assessment models, such as qualitative and quantitative, are used to evaluate and manage the risks

associated with deploying applications in containers. The qualitative model involves subjectively assessing

potential security threats based on their perceived impact and likelihood, categorizing risks into levels such as

low, medium, or high to guide prioritization and remediation efforts without assigning numerical values.

Conversely, the quantitative model seeks to assign specific numerical values to risks, calculating potential

impact in monetary terms using data such as historical incident rates and possible financial losses to facilitate

objective decisionmaking and cost-benefit analysis of security investments. Risks in containerized environments

can disrupt business continuity by causing service outages or data loss. Compliance risks arise when

vulnerabilities or misconfigurations lead to non-compliance with industry regulations.

DETECTION OF VULNERABILITY THREATS

Detecting vulnerabilities within containerized systems is an essential aspect of maintaining the security and

integrity of cloud infrastructure. A variety of tools and techniques have been developed to detect vulnerabilities

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

68

in containerized systems [9][10]. These tools and techniques can generally be classified into two broad

categories: static analysis and dynamic analysis.

Static Analysis

Static analysis involves examining the container images without executing them. This method focuses on

inspecting the contents of the container's file system, the configuration files, and the software components that

are part of the container image [16].

A. Vulnerability Scanners:

Tools like Clair, Anchore, and Trivy scan container images for known vulnerabilities in the operating system

packages and application dependencies [13]. They rely on databases of known vulnerabilities, such as the

Common Vulnerabilities and Exposures (CVE) list, to identify potential security issues.

B. Configuration Auditing:

Tools like Docker Bench for Security and Kube-bench examine the configuration of container environments

against best practices. They check for issues such as inappropriate user permissions, exposed ports, and the use

of default credentials.

C. Dependency Checkers:

Dependency checkers, such as OWASP Dependency

Check, analyze the libraries and dependencies included in the container images to identify any vulnerabilities.

Dynamic Analysis

Dynamic analysis involves inspecting a running container to identify potential security issues. Tools that

monitor containers' runtime behavior for anomalies and vulnerabilities can be used for this.

A. Runtime Security Monitoring:

Tools like Sysdig Falco and Aqua Security monitor the behavior of running containers for suspicious activities

that may indicate a breach or a vulnerability being exploited.

B. Fuzz Testing:

Fuzzing involves inputting large amounts of random data into the containerized application to uncover potential

security vulnerabilities that may cause crashes or unexpected behavior.

Evaluation of Threat Detection Methodologies Effectiveness

The effectiveness of vulnerability threat detection approaches can be measured based on their ability to identify

known and unknown vulnerabilities, the breadth of vulnerabilities covered, the precision and accuracy of

findings, and the speed at which they can provide results.

A. Static Analysis tools:

Static Analysis Security Testing (SAST) tools are used to detect vulnerabilities in container images by

examining source code or binary code at rest. SAST tools are effective in identifying known vulnerabilities in

the container images before deployment. However, they may not detect zero-day vulnerabilities or issues that

only arise when the application is running. Additionally, they can generate false positives that require manual

validation.

B. Dynamic Analysis tools:

Dynamic Application Security Testing (DAST) tools involve executing containerized applications in a

controlled environment to identify vulnerabilities that appear during runtime. DAST tools are effective in

identifying vulnerabilities that manifest during runtime, including misconfigurations and runtime breaches.

However, they are resource-intensive and require a running environment, which may not be as effective in the

early stages of the development lifecycle.

C. Dependency Scanning:

Dependency scanning tools analyze the libraries and packages that applications depend on to identify known

vulnerabilities. It is highly effective in managing and securing the software supply chain by identifying out-

ofdate or vulnerable libraries and significantly reducing the risk of vulnerabilities in third-party libraries.

However, it's limited by the comprehensiveness of the dependency database and does not detect configuration or

runtime vulnerabilities.

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

69

D. Interactive Application Security Testing (IAST):

IAST is a methodology that combines elements of SAST and DAST to identify application vulnerabilities. It

works by instrumenting the application or its runtime environment to monitor the application's behavior and

data flow in real-time. However, IAST's integration into the application or its runtime environment can be

complex, potentially introducing performance overhead and requiring thorough testing.

MITIGATION STRATEGIES FOR ENHANCED SECURITY

Mitigating vulnerabilities in containerized environments involves a multifaceted approach that encompasses

numerous strategies and tools to secure the containers.

A. Regular Vulnerability Scanning and Management:

Continuously scan for vulnerabilities in container images and running containers using tools like Clair, Trivy, or

Anchore. Implement a vulnerability management strategy that prioritizes and remediates identified

vulnerabilities based on their severity and potential impact on the environment. Patches and updates must be

applied promptly to address identified security issues [14].

B. Minimal Base Images:

Use minimal base images that contain only the necessary OS libraries and dependencies required to run your

application. This reduces the attack surface by limiting the number of components that can be exploited.

C. Least Privilege Principle:

Containers should be run with the least set of privileges necessary for their operation. This can be achieved

through user namespaces to map container users to nonroot users on the host and by minimizing the capabilities

granted to containers.

D. Immutable Containers:

Containers should be treated as immutable; any change needed should result in rebuilding and redeploying the

container rather than modifying the running instance. This approach reduces the risk of runtime modifications

that could introduce vulnerabilities.

E. Network Segmentation and Policy Enforcement:

Implement network policies to control traffic between containers and services. By segmenting the network and

defining rules that limit communications, the lateral movement of attackers within the network can be restricted.

Tools like Calico or Cilium can enforce these policies in Kubernetes clusters.

F. Runtime Security:

Runtime security involves monitoring the behavior of running containers and taking action against suspicious

activities. Tools such as Falco can monitor system calls and detect suspicious activities, which can then trigger

alerts or automated responses [15].

G. Secrets Management:

Sensitive data like passwords, API tokens, and keys should not be hardcoded in container images or source

code. They should be managed using a secure vault service such as HashiCorp Vault or Kubernetes Secrets.

H. Container Orchestration Security:

Container Orchestrators like Kubernetes should be securely configured according to best practices, such as

enabling Role-Based Access Control (RBAC), using network policies, and securing the etcd datastore with

encryption and access controls [17].

I. Adhere to the CIS Benchmarks:

The Center for Internet Security (CIS) provides benchmarks for Docker and Kubernetes that offer detailed

guidelines for hardening container environments.

J. Follow NIST Guidelines:

The National Institute of Standards and Technology (NIST) publishes documents such as the NIST SP 800-190

Application Container Security Guide, providing a comprehensive overview of container security concerns and

recommendations.

K. DevSecOps Integration:

Integrate security practices into the DevOps pipeline (DevSecOps) to ensure continuous security assessment and

compliance. Tools like Jenkins and CircleCI can be integrated with security scanning tools to automate security

checks.

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

70

L. Responsive Measures:

Develop and maintain an incident response plan that includes container-specific procedures for detecting,

responding to, and recovering from security incidents. Automated response mechanisms can be configured to

isolate compromised containers or terminate them. Moreover, threat intelligence platforms can help understand

emerging threats and adapt defensive strategies accordingly.

CONCLUSION

The imperative to enhance security within containerized environments cannot be overstated, given their pivotal

role in modern IT infrastructure and the unique security challenges they introduce. This study has contributed to

the field by systematically reviewing the landscape of vulnerability threats, risks, detection methodologies, and

mitigation strategies pertinent to containerized systems. Its findings underscore the complexity of the security

challenges faced and highlight the necessity for a comprehensive and nuanced approach to securing

containerized environments. The evolution of the threat landscape, with attackers continuously devising new

methods to exploit vulnerabilities, necessitates ongoing research into adaptive security strategies that can

dynamically respond to emerging threats. By embracing a culture of security and implementing strong security

measures, we can aspire to create containerized environments that are efficient, scalable, and secure.

REFERENCES

[1]. D. Bernstein, Containers and Cloud: From LXC to Docker to Kubernetes, IEEE Cloud Computing, vol.

1, no. 3, pp. 81-84, September 2014.

[2]. D. Merkel, Docker: lightweight Linux containers for consistent development and deployment, Linux

Journal, May 2014.

[3]. K. Hightower, B. Burns, J. Beda, Kubernetes: Up and Running: Dive into the future of Infrastructure,

O’Reilly, October 2017.

[4]. L. Rice, Container Security: Fundamental Technology Concepts that Protect Containerized

Applications, O’Reilly, May 2020.

[5]. T. Combe, A. Martin, and R. Di Pietro, To Docker or Not to Docker: A Security Perspective, IEEE

Cloud Computing, vol. 3, no. 5, pp. 54-62, September 2016.

[6]. S. Sultan, I. Ahmad, and T. Dimitriou, Container Security: Issues, Challenges, and the Road Ahead,

IEEE Access, vol. 7, pp. 52976-52996, April 2019.

[7]. S.P. Mullinix, E. Konomi, R.D. Townsend, and R.M. Parizi, On Security Measures for Containerized

Applications Imaged with Docker, arXiv, August 2020.

[8]. X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, A Measurement Study on Linux Container

Security: Attacks and Countermeasures, ACSAC '18: Proceedings of the 34th Annual Computer

Security Applications Conference, December 2018.

[9]. O. Tunde-Onadele, J. He, T. Dai, and X. Gu, A Study on Container Vulnerability Exploit Detection,

2019 IEEE International Conference on Cloud Engineering (IC2E), June 2019.

[10]. A. Martin, S. Raponi, T. Combe, and R. Di Pietro, Docker ecosystem - Vulnerability Analysis,

Computer Communications, vol. 122, pp. 30-43, June 2018.

[11]. E. Casalicchio and S. Iannucci, The state-of-the-art in container technologies: Application,

orchestration and security, Concurrency and Computation: Practice and Experience, January 2020.

[12]. M. Souppaya, J. Morello, and K. Scarfone, Application Container Security Guide, csrc.nist.gov,

September 2017.

[13]. T. Jernigan, Scanning Docker Images for Vulnerabilities using Clair, Amazon ECS, ECR, and AWS

CodePipeline, AWS Compute Blog, November 2018.

[14]. A. Zerouali, T. Mens, G. Robles, and J. GonzalezBarahona, On The Relation Between Outdated

Docker Containers, Severity Vulnerabilities and Bugs, arXiv, November 2018.

[15]. A.R. Manu, J.K. Patel, S. Akhtar, V.K. Agrawal, and K.N.B. Subramanya Murthy, A study, analysis

and deep dive on cloud PAAS security in terms of Docker container security, International Conference

on Circuit, Power and Computing Technologies (ICCPCT), March 2016.

[16]. A. Duarte and N. Antunes, An Empirical Study of Docker Vulnerabilities and of Static Code Analysis

Applicability, Eighth Latin-American Symposium on Dependable Computing (LADC), October 2018.

Perumal AP Euro. J. Adv. Engg. Tech., 2021, 8(7):64-71

71

[17]. Rice, M. Hausenblas, Kubernetes Security, O’Reilly, November 2018.

