
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(6): 82-87

Research Article ISSN: 2394-658X

82

Maximizing Test Coverage with Combinatorial Test Design:

Strategies for Test Optimization

Kodanda Rami Reddy Manukonda

Email id - reddy.mkr@gmail.com

ABSTRACT

In order to maximize coverage and improve test suites, this study focuses on the significance of test coverage in

software development. In order to find flaws, improve software quality, and boost customer trust in the product,

test coverage is essential. The three primary forms of test coverage—requirements coverage, code coverage, and

fault coverage—are defined and discussed in the paper. A method for optimizing test suites by determining the

bare minimum of tests required for thorough coverage is highlighted: combinatorial test design. Increasing test

automation and optimizing device coverage are two tactics for maximizing test coverage. The exploration likewise

covers combinatorial test suite age strategies, including FireEye, which utilizes the Initial public offering

calculation to create productive test suites. In rundown, the examination features the meaning of test inclusion in

programming advancement and offers important viewpoints on strategies and assets to work on the viability and

proficiency of test inclusion.

Keywords: Test coverage, software development, combinatorial test design, test automation, device coverage,

FireEye, IPO algorithm.

INTRODUCTION

Ensuring the quality and stability of software products is vital in the ever-evolving field of software development.

Test coverage—a measure of how thoroughly a software system has been tested—is essential to reaching these

objectives. Test coverage plays a critical role in finding and reducing potential flaws, boosting software quality,

and building trust in the product [1].

A. Defining Test Coverage

By identifying the sections, features, or functionalities that were tested during the testing process, test coverage

calculates the degree to which a software system has undergone testing. It is a statistic that helps determine any

weaknesses in the testing approach and assesses how comprehensive the testing was [2]. Requirements coverage,

code coverage, and fault coverage are metrics that may be used to quantify test coverage.

[1]. Needs-Based Coverage: This kind of test coverage guarantees that there are test cases for each of the

criteria listed for a software system. By ensuring that all planned functionality is thoroughly tested, it

lowers the possibility of missing important features.

[2]. Code Coverage: This quantifies the percentage of code that has been run through testing. It assists in

evaluating the level of exercise performed on the codebase by pointing out any untested or dead code.

The proportion of lines, statements, branches, or pathways that the tests cover is typically used to

calculate code coverage.

[3]. Fault Coverage: This type of coverage concentrates on pinpointing the particular flaws or problems that

have been found during testing. It assesses how well tests identify possible problems and contributes to

raising the software's overall dependability.

B. Combinatorial Test Design

One of the most important stages of the test life cycle is test design, which establishes the amount and kind of data

required for testing, as well as the amount of testing that will be done throughout execution. It also defines what

tests will eventually be automated for future execution [3].

mailto:reddy.mkr@gmail.com

Manukonda KRR Euro. J. Adv. Engg. Tech., 2021, 8(6): 82-87

__

83

When an optimized test suite is produced, which is equivalent to the fewest tests necessary to provide the

necessary test coverage, combinatorial testing as a design method becomes extremely beneficial. The rationale of

the solution appeals to customers and teams alike, but adoption frequently demands a bigger transformational

approach; in an environment where testing prowess is traditionally assessed by the number of tests being

conducted. This strategy is thought to be disruptive in addition to being novel.

One of the most important stages of the test life cycle is test design, which establishes the amount and kind of data

required for testing, as well as the amount of testing that will be done throughout execution. It also defines what

tests will eventually be automated for future execution. When an optimized test suite is produced, which is

equivalent to the fewest tests necessary to provide the necessary test coverage, combinatorial testing as a design

method becomes extremely beneficial [4]. The rationale of the solution appeals to customers and teams alike, but

adoption frequently demands a bigger transformational approach; in an environment where testing prowess is

traditionally assessed by the number of tests being conducted. This strategy is thought to be disruptive in addition

to being novel.

[1]. Consistency: Automated combinatorial testing methods provide consistency in the creation,

execution, and assessment of test cases. This uniformity reduces the chance of human error while

ensuring that testing is done methodically and consistently.

[2]. Efficiency: Combinatorial testing tools automate the creation of test cases by meticulously

examining the combinations of input parameters and their values. This approach is more effective

than manual testing and can quickly cover a large number of test scenarios.

[3]. Resource Optimization: Combinatorial testing tools aid in the optimization of testing resources by

focusing on the most crucial combinations of input parameters.

[4]. Coverage: These techniques aid in the identification of potential flaws resulting from parameter

interactions by offering comprehensive coverage of all possible input parameter combinations.

[5]. Risk Reduction: By carefully testing combinations of input parameters, combinatorial testing

techniques lower the likelihood of software errors caused by unforeseen interactions or

dependencies between parameters.

[6]. Time Savings: Testers no longer have to spend their time manually building and managing large

sets of test cases thanks to automated combinatorial testing technologies.

We use combinatorial testing tools because manual combinatorial testing on a large number of input parameters

can be a laborious task due to the complex procedure involved in combinatorial testing. These tools are not only

simple to use with a wide range of input parameters, but they can also generate test configurations in accordance

with the constraints added to the input parameters. Online resources offer a plethora of tools for combinatorial

testing. We will talk about a few of these free online tools for creating test configurations in this article.

C. Techniques for Maximize Test Coverage

[1]. Increase Test Automation

It is not possible to rely solely on manual testing to guarantee that a significant number of tests are

completed by a deadline. The necessary tests for automation testing, particularly parallel testing, must be

completed in a matter of days or hours. Using a cloud-based testing service that allows automation on

real browsers and devices is the simplest way to conduct automated tests. With BrowserStack's cloud

Selenium grid of more than 3000 browsers and actual devices, automated Selenium testing is simple [5].

The grid supports parallel testing, speeding up their builds and resulting in speedier releasesWith pre-

built interfaces spanning over 20+ programming languages and frameworks, BrowserStack Automate

integrates effortlessly into current CI/CD processes by providing plugins for all major CI/CD platforms.

[2]. Maximize Device Coverage

Try as many combinations of OS, browser, and device as you can. There are many versions of every OS,

browser, and device type that need be taken into account. Once more, the ideal option is to select and

make use of a cloud-based testing platform such as BrowserStack that provides access to both modern

and antiquated hardware, operating systems, and browsers. Users have access to more than 3000 genuine

devices and browsers for testing, as was indicated in the preceding section. Tests may be conducted, for

instance, using Chrome on a Samsung Galaxy S20, Safari on an iPhone 14, and similar apps.

LITERATURE REVIEW

Bezney [6] The counteraction and the board of SARS-CoV-2 disease rely intensely upon continuous and

dependable RT-PCR-based testing; regardless, time and assets are still habitually imperatives for dynamic

Manukonda KRR Euro. J. Adv. Engg. Tech., 2021, 8(6): 82-87

__

84

contamination observation. Cleary et al. show that, both hypothetically and as tried in vitro utilizing human swab

and sputum tests, considering populace level viral commonness and individual viral burdens licenses proficiency

benefits upon pooled testing with least loss of awareness. Barak et al. exhibit the viability of the technique by and

by pooling testing 133,816 clinic gathered patient nasopharyngeal examples, which eliminated 75% of testing

reactions with a tiny bit of diminishing in responsiveness. The two outcomes show that SARS-CoV-2 testing

throughput may be reliably expanded via cautiously pooling individual examples preceding testing.

Grédiac and Pierron, [7] Inside the field of trial mechanics, full-field optical estimations, for example,

computerized picture relationship and the framework approach have achieved a worldview change. Despite the

fact that there have been huge headways in converse recognizable proof procedures, for example, the virtual fields

strategy or limited component model refreshing, the ongoing test techniques, which date back to the times of

strain checks and direct factor relocation transducers, are commonly not appropriate to the abundance of data

presented by these new estimation apparatuses. This work offers an outline of the writing on the turn of events and

improvement of heterogeneous mechanical tests to decide material properties from full-field information, which

are alluded to as Tests for Material 2.0 (MT2.0).

Khoshnevisand Fathi, [8] One of the most urgent objectives of programming advancement is reusability,

especially in programming product offering (SPL) designing, which incorporates errands connected with

examination, plan, execution, testing, and upkeep. Reusability should subsequently be given cautious thought in

programming product offering testing as well as different undertakings. Reusability in SPL testing not set in stone

and measured in a few strategies. To further develop reusability in SPL testing (SPLT), we initially present four

different reusability measurements in this paper. Then, we tentatively research how two of the proposed

reusability measurements can be impacted (improved) by a search-based software testing (SBST) approach for

upgrading a current SPL space test suite. The two test reusability measurements — TSRR (test suite reusability

regarding test requirements) and TCRR (test case reusability regarding test requirements) — that were picked for

the trial and error on 20 SPL highlight models of size 5000 showed a huge improvement in enhanced

arrangements when contrasted with non-upgraded arrangements.

Skillet [9] There is a developing opportunity that noxious inserts, frequently alluded to as equipment Trojans,

could think twice System-on-Chip (SoC) (SoC) plans because of the overall semiconductor production network.

Sadly, because of the outstanding info space intricacy of current SoCs, conventional reenactment-based approval

utilizing a great many test vectors isn't appropriate for recognizing secretive Trojans with profoundly exceptional

trigger circumstances. To ensure solid SoCs, making powerful Trojan recognition methods is basic. Albeit certain

test creating frameworks show guarantee, their versatility and discovery exactness are seriously restricted. In this

exploration, we consolidate testability examination and support figuring out how to introduce a special rationale

testing method for Trojan ID. This work explicitly gives three huge commitments. 1) We enormously improve the

trigger inclusion over past strategies by using both controllability and recognizability examination notwithstanding

the uncommonness of signs. 2) Test age time is fundamentally abbreviated while support learning is utilized, all

without compromising test quality. 3) In light of exploratory outcomes, we can essentially beat cutting edge

strategies concerning trigger inclusion (normal of 14.5%) and test age time (normal of 6.5 times).

Yan et al., [10] various brain network inclusion rules (e.g., model accuracy against ill-disposed attacks) have been

proposed to direct the testing of brain network models, enlivened by the huge outcome of using code inclusion as

direction in programming testing. It is as yet not completely self-evident, however, assuming that there is an

equivalent monotonicity between brain network model inclusion and model quality, regardless of the way that

various powerful examination in programming have shown a monotonic connection between code inclusion and

programming quality. This audit intends to give a response to that question. Specifically, this paper researches the

connection between inclusion measures and DNN model quality, the adequacy of inclusion-based retraining in

contrast with past antagonistic preparation, the impacts of inclusion directed ill-disposed model age in

examination with slope good based techniques, and the inner connections among inclusion rules.

TOOLS THAT GENERATE COMBINATORIAL TEST SUITES

Algebraic, greedy, or heuristic search algorithms are the three primary categories of algorithms used to build

combinatorial test suites. The following is a summary of the main benefits and drawbacks of the methods used to

create combinatorial test suites:

Manukonda KRR Euro. J. Adv. Engg. Tech., 2021, 8(6): 82-87

__

85

A. Algebraic approaches

[1]. It provides time-efficient constructs, but using algebraic methods to get correct results on a wide range of

inputs might be challenging.

[2]. Due to their relative accuracy and time efficiency, greedy algorithms have been extensively researched for

the creation of covering arrays.

[3]. In various cases up to this point, heuristic hunt — particularly while utilizing Simulated Annealing (SA) —

has created the most reliable outcomes. Large numbers of the briefest test suites for different framework

designs have been created by this nearby hunt method, but the test suite age process costs execution time.

Figure 1: Interaction strengths 1–6 fault detection

For further information on these techniques, please refer to the aforementioned articles. We have also included an

explanation of FireEye, a free research tool that may be used to create combinatorial test suites. [12] Initially

introduced the IPO technique for pairs testing, whilelater expanded it to generic t-way combinatorial testing. The

generic version of the IPO algorithm, known as IPOG, is implemented by the FireEye tool. We offer a synopsis of

the algorithm as well as screenshots of the tool that applies it. As a result, the readers have a model to work from

when creating their own test suites.

Table 1: Percentage of errors detected at interaction strengths ranging from 1 to 6

Interaction Strength Med Dev. Browser Server NASA NW Sec

1 66% 38% 42% 65% 17%

2 98% 78% 70% 84% 65%

3 99% 96% 84% 85% 84%

4 100% 67% 96% 98% 95%

5 100% 98% 96% 98% 65%

6 100% 99% 95% 95% 45%

AUTOMATING TESTS WITH SELENIUM AND JAVA

Test automation in programming testing alludes to utilizing specific programming (not quite the same as the item

being tested) to oversee test execution and analyze expected and genuine outcomes. Test automation can add

seriously testing that would be trying to do physically or robotize certain dreary yet fundamental positions in a

laid-out testing process.

A. Selenium

A structure for convenient programming testing of web applications is called Selenium. Without learning

a test prearranging language, Selenium offers a creating/recording device (Selenium IDE). Besides, it

offers Selena, a test space explicit language, for composing tests in an assortment of notable

programming dialects, like Java, C#, Sweet, Perl, PHP, Python, and Ruby. Most of current internet

0

50

100

150

200

250

1 2 3 4 5 6

fa
u

lt
 d

e
te

c
ti

o
n

 (
%

)

Interactions

NW Sec

NASA

Server

Browser

Manukonda KRR Euro. J. Adv. Engg. Tech., 2021, 8(6): 82-87

__

86

browsers may then be utilized to execute the tests. Selenium is accessible for Mac, Linux, and Windows.

It is allowed to download and utilize, open-source programming conveyed under the Apache 2.0 permit.

B. IDE for Selenium

The integrated development environment (IDE) for Selenium testing is called Selenium IDE (Figure 1). It

can record, change, and investigate tests and is executed as a Firefox Extra. Selenium Recorder was its

previous name [14].

Recording. A common initial step for inexperienced users is to capture a test case of their online

interactions. The record button is automatically turned on when Selenium-IDE is initially launched. To

keep Selenium-IDE from beginning to record consequently, go to Choices > Choices... also, uncheck the

container close to "Begin recording quickly on open" [15]. In light of your activities during recording,

Selenium-IDE will consequently add directions to your test case. Generally, this will comprise of:

[1]. utilizing click or clickAndWait guidelines while clicking a connection

[2]. picking a choice from a drop-down listbox by composing the order;

[3]. embedding values

[4]. choosing radio buttons or checkboxes to execute an order

Coming up next are a few unsafe situations to be aware of:

[1]. For the composing order to record, you could have to tap on one more piece of the site

[2]. Tapping on a connection frequently starts a tick order.

Test cases might be executed on numerous spaces by utilizing the base URL. Test cases might be executed across

different areas on account of the Base URL field situated at the highest point of the Selenium-IDE window.

Expect that http://news.portal.com is a site, and http://beta.news.portal.com is an inside beta site. Test cases for

these locales that beginning with an open assertion ought to as opposed to utilizing a flat out URL (e.g., beginning

with http: or https:) as the boundary to open, utilize a relative URL. Then, by connecting the boundary of the open

order to the furthest limit of the worth of Base URL, Selenium-IDE will develop an outright URL. The test case

introduced underneath, for example, would be executed against http://news.portal.com/about.html (Figure 2).

Figure 2: Executing Test Cases on a URL

The test case in question would be executed against http://beta.news.portal.com/about.html with a changed Base

URL configuration. (Fig. 3):

Figure 3: Executing Test Cases on another URL

Many commands in Selenium require a target. This target, which is composed of the location strategy and the

location in the format "locatorType=location," identifies a component inside the web application's content. In

many circumstances, the location type need not be specified. Below is an explanation of the different locator types

along with examples.

Manukonda KRR Euro. J. Adv. Engg. Tech., 2021, 8(6): 82-87

__

87

CONCLUSION

To guarantee that testing procedures are reliable and comprehensive, test coverage is an essential component of

software development. The study has brought attention to how crucial test coverage is for finding bugs, improving

software quality, and boosting user confidence. It has been suggested that techniques like combinatorial test

design are useful for optimizing test suites and reducing the total number of tests needed for thorough coverage. In

order to improve test coverage efficiency, the study has also underlined the need of test automation and optimizing

device coverage. It has been determined that resources such as FireEye, which implements the IPO technique, are

useful for creating combinatorial test suites and enhancing test coverage.

REFERENCES

[1]. A. Mockus and N. N., "Test Coverage and Post-Verification Defects: A Multiple Case Study," in the 3rd

International Symposium on Empirical Software Engineering and Measurement, 2009. ESEM 2009.

[2]. A. Rauf and S. Anwar, "Automated GUI Test Coverage Analysis Using GA," in Proceedings of the 2010

Seventh International Conference on Information Technology: New Generations, pp. 1057-1062, 2010.

[3]. J. Takahashi, H. Kojima, et al., "Coverage Based Testing for Concurrent Software," in 28th International

Conference on Distributed Computing Systems Workshops, 2008. ICDCS '08.

[4]. A. Jalote and P. Gupta, "An approach for experimentally evaluating effectiveness and efficiency of

coverage criteria for software testing," in International Journal on Software Tools for Technology

Transfer (STTT), vol. 10, no. 2, pp. 145-160, 2008.

[5]. M. W. Whalen, M. P. E. Heimdahl, et al., "Coverage metrics for requirements-based testing," in

Proceedings of the 2006 International Symposium on Software Testing and Analysis, ISSTA 2006, pp.

25-35, 2006.

[6]. B. Cleary et al., "Using viral load and epidemic dynamics to optimize pooled testing in resource-

constrained settings," Science translational medicine, vol. 13, no. 589, p. eabf1568, 2021.

[7]. F. Pierron and M. Grédiac, "Towards Material Testing 2.0. A review of test design for identification of

constitutive parameters from full‐field measurements," Strain, vol. 57, no. 1, p. e12370, 2021

[8]. M. Fathi and S. Khoshnevis, "Reusability Metrics in Search-Based Testing of Software Product Lines:

An Experimentation," in 2021 26th International Computer Conference, Computer Society of Iran

(CSICC), pp. 1-6, Mar. 2021.

[9]. Z. Pan and P. Mishra, "Automated test generation for hardware trojan detection using reinforcement

learning," in Proceedings of the 26th Asia and South Pacific Design Automation Conference, pp. 408-

413, Jan. 2021.

[10]. S. Yan et al., "Correlations between deep neural network model coverage criteria and model quality," in

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pp. 775-787, Nov. 2020.

[11]. J. Bergdahl et al., "Augmenting automated game testing with deep reinforcement learning," in 2020

IEEE Conference on Games (CoG), pp. 600-603, Aug. 2020.

[12]. S. Verma, M. Pant, and V. Snasel, "A comprehensive review on NSGA-II for multi-objective

combinatorial optimization problems," IEEE access, vol. 9, pp. 57757-57791, 2021.

[13]. S. A. Al-Ahmed, M. Z. Shakir, and S. A. R. Zaidi, "Optimal 3D UAV base station placement by

considering autonomous coverage hole detection, wireless backhaul and user demand," Journal of

Communications and Networks, vol. 22, no. 6, pp. 467-475, 2020.

