
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(6):42-47

Research Article ISSN: 2394 - 658X

42

Service Mesh and Microservices: Implementation of Service Mesh

Architecture for Secure Service Communication and the

Orchestration of Microservices

Gowtham Mulpuri

Silicon Labs, TX, USA

*gowtham.mulpuri@silabs.com

ABSTRACT

This white paper presents a comprehensive exploration of service mesh architecture and its implementation in

the context of microservices. With over a decade of experience as a senior DevOps engineer, it delves into the

practical aspects of deploying and managing microservices, emphasizing the role of service mesh in enhancing

secure service communication and orchestration. The paper aims to provide insights into the experiences

gained from working with service mesh technologies, focusing on security, observability, and resilience

improvements.

Key words: Service Mesh, Microservices, Security, Observability, Resilience, DevOps, Istio, Linkerd, Consul

__

INTRODUCTION

In the rapidly evolving landscape of software development and deployment, microservices have emerged as a

game-changer. Microservices offer a modular approach to application development, allowing for independent

deployment and scaling of services. However, managing microservices at scale poses significant challenges,

including service discovery, load balancing, failure recovery, metrics, and monitoring. Service mesh architecture

emerged as a solution to address these challenges, providing a dedicated infrastructure layer for handling

service-to-service communication. This paper aims to share insights and experiences gained from working with

service mesh technologies, focusing on security, observability, and resilience improvements.

SERVICE MESH AND MICROSERVICES

Service Mesh Architecture

Control Plane

The control plane is responsible for managing the service mesh. It includes components like:

Pilot: Manages and configures all the Envoy proxies in the service mesh.

Mixer: Enforces policies and collects telemetry data.

Citadel: Provides strong service-to-service and end-user authentication.

Data Plane

The data plane consists of the Envoy proxies deployed alongside each microservice. These proxies intercept and

manage all network communication between microservices.

Use Cases

Security: Service mesh provides a unified way to secure service communication, including mutual TLS, access

control, and authentication.

Observability: It enhances observability by providing detailed metrics and logs for service communication,

facilitating monitoring and debugging

Mulpuri G Euro. J. Adv. Engg. Tech., 2021, 8(6):42-47

43

Traffic Management: Service mesh allows for fine-grained control over traffic, including routing, retries,

timeouts, and fault injection.

PRACTICAL IMPLEMENTATION

Istio

Istio is a popular service mesh that can be implemented in a Kubernetes environment. Here's a basic example of

how to deploy Istio:

Install Istio:

Enable Automatic Sidecar Injection:

Deploy a Sample Application:

Access the Application:

Then, access the application at http://localhost:8080/productpage.

EXAMPLES AND CODE SNIPPETS

Enabling Mutual TLS

To enable mutual TLS in Istio, you can apply a PeerAuthentication resource:

Traffic Routing

To route traffic to a specific version of a service, you can use a VirtualService:

curl -L https://istio.io/downloadIstio | sh -

cd istio-1.11.4

export PATH=$PWD/bin:$PATH

istioctl install --set profile=demo

kubectl label namespace default istio-injection=enabled

kubectl apply -f samples/bookinfo/platform/kube/bookinfo.yaml

kubectl port-forward svc/istio-ingressgateway 8080:80

apiVersion: "security.istio.io/v1beta1"

kind: "PeerAuthentication"

metadata:

 name: "default"

 namespace: "foo"

spec:

 mtls:

 mode: STRICT

http://localhost:8080/productpage

Mulpuri G Euro. J. Adv. Engg. Tech., 2021, 8(6):42-47

44

Service mesh architecture is a dedicated infrastructure layer for handling service-to-service communication in a

microservices environment. It decouples the networking and communication concerns from the application

logic, allowing for independent scaling and management of services.

Security: Service mesh provides a unified way to secure service communication, including mutual TLS, access

control, and authentication.

Observability: It enhances observability by providing detailed metrics and logs for service communication,

facilitating monitoring and debugging.

Resilience: Service mesh improves resilience by implementing features like retries, timeouts, and circuit

breakers, ensuring that services can recover from failures.

Microservices

Microservices are a software development technique that structures an application as a collection of loosely

coupled services. Each service is independently deployable and scalable, allowing for faster development and

deployment cycles.

Scalability: Microservices can be scaled independently, allowing for efficient resource utilization.

Flexibility: They offer flexibility in technology choices, enabling teams to use the best tools for each service.

Agility: Microservices enable teams to develop, deploy, and scale services independently, increasing agility.

IMPLEMENTATION OF SERVICE MESH ARCHITECTURE FOR SECURE SERVICE

COMMUNICATION

Istio

Istio is an open-source service mesh that provides a comprehensive solution for service communication in

microservices environments.

Security: Istio offers robust security features, including automatic mutual TLS, fine-grained access control, and

authentication policies.

Observability: It provides detailed metrics and logs through its observability features, including distributed

tracing and monitoring.

Resilience: Istio implements resilience features like retries, timeouts, and circuit breakers, ensuring high

availability and reliability.

LINKERD

Linkerd is a lightweight, high-performance service mesh that focuses on simplicity and security.

Security: Linkerd provides automatic mutual TLS and identity-based security, ensuring secure service

communication.

Observability: It offers detailed metrics and logs, facilitating monitoring and debugging.

Resilience: Linkerd implements resilience features like retries, timeouts, and circuit breakers, ensuring high

availability and reliability.

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: my-service

spec:

 hosts:

 - my-service.default.svc.cluster.local

 http:

 - route:

 - destination:

 host: my-service.default.svc.cluster.local

Mulpuri G Euro. J. Adv. Engg. Tech., 2021, 8(6):42-47

45

CONSUL

Consul is a service mesh solution that provides service discovery, configuration, and segmentation functionality.

Security: Consul offers service segmentation and access control, ensuring secure service communication.

Observability: It provides detailed metrics and logs, facilitating monitoring and debugging.

Resilience: Consul implements resilience features like retries, timeouts, and circuit breakers, ensuring high

availability and reliability.

REAL-TIME USE CASES AND ADVANTAGES

Real-Time Use Cases

Financial Services: Service mesh provides a secure and reliable communication layer for microservices,

ensuring compliance with financial regulations.

E-commerce Platforms: It enables efficient scaling and management of microservices, improving user

experience and operational efficiency.

Healthcare Systems: Service mesh ensures secure and reliable service communication, protecting sensitive

patient data.

ADVANTAGES

Automated Security: Service mesh automates the security of service communication, reducing the operational

overhead and potential security risks.

Improved Observability: It enhances observability by providing detailed metrics and logs, facilitating

monitoring and debugging.

Enhanced Resilience: Service mesh improves resilience by implementing features like retries, timeouts, and

circuit breakers, ensuring high availability and reliability.

Service Mesh Architecture: A diagram illustrating the architecture of a service mesh, including the control

plane and data plane.

Figure 1: Kubernetes Service Mesh

Microservices Communication: A diagram showing how microservices communicate through a service mesh,

highlighting the security, observability, and resilience features.

Mulpuri G Euro. J. Adv. Engg. Tech., 2021, 8(6):42-47

46

Figure 2: Microservices Service Mesh Communication

Microservices Section: Represents the individual services or applications that make up a distributed system,

each with specific roles or functionalities.

Service Mesh Section: Illustrates the service mesh layer which facilitates secure, reliable, and observable

communication between the microservices. It is divided into three key areas:

Security: Showcasing how the service mesh provides security measures like access control and traffic

encryption to safeguard communication.

Observability: Highlighting the mesh's ability to collect metrics, logs, and traces, offering insights into the

health and performance of the microservices.

Resilience: Demonstrating resilience features such as retry mechanisms, circuit breaking, and rate limiting,

which help maintain stability and minimize downtime.

Istio, Linkerd, and Consul Comparison: A diagram comparing the features and capabilities of Istio, Linkerd,

and Consul.

Feature/Capability Istio Linkerd Consul

Service Discovery Yes Yes Yes

Load Balancing Yes Yes Yes

Traffic Management Advanced (e.g., routing rules, retries) Basic Basic

Observability Advanced (e.g., metrics, logs, traces) Basic Basic

Security Advanced (e.g., mTLS, RBAC) Basic Basic

Performance Good Excellent Good

Mulpuri G Euro. J. Adv. Engg. Tech., 2021, 8(6):42-47

47

Ease of Use Complex Simple Simple

Community and Support Large Medium Large

Figure 3: Comparison Chart of Various Service Meshes

The Figure 3 chart above compares Istio, Linkerd, and Consul across various features and capabilities such as

service discovery, load balancing, traffic management, observability, security, performance, ease of use, and

community support. It highlights the strengths and weaknesses of each service mesh, providing a clear overview

to help you decide which might be the best fit for your specific needs.

CONCLUSION

Service mesh architecture plays a crucial role in the management of microservices, enhancing secure service

communication, observability, and resilience. By leveraging service mesh technologies like Istio, Linkerd, and

Consul, organizations can achieve operational efficiency, security, and reliability, enabling them to deliver high-

quality applications more rapidly and reliably. Container orchestration platforms are pivotal in managing the

lifecycle of containers in large-scale, distributed systems. Kubernetes stands out for its advanced scalability and

security features, making it the preferred choice for complex deployments. Docker Swarm offers simplicity and

ease of use for smaller-scale applications, while Nomad provides flexibility in orchestrating not only containers

but also non-containerized applications. As the digital landscape continues to evolve, the strategic adoption of

container orchestration platforms will be crucial in harnessing the full potential of cloud-native technologies.

REFERENCES

[1]. Istio Documentation. https://istio.io/latest/docs/

[2]. Linkerd Documentation. https://linkerd.io/2.15/overview/

[3]. Consul Documentation. https://developer.hashicorp.com/consul/docs

[4]. Rahman, A., Shamim, S. I., Bose, D. B., & Pandita, R. (2021). Security Misconfigurations in Open

Source Kubernetes Manifests: An Empirical Study. https://www.semanticscholar.org/paper/Security-

Misconfigurations-in-Open-Source-An-Study-Rahman-

Shamim/61020665f9134e56009b6e10606fc21348f59d53

[5]. Ding, Z., Wang, S., & Jiang, C. (2021). Kubernetes-Oriented Microservice Placement With Dynamic

Resource Allocation. https://www.semanticscholar.org/paper/Kubernetes-Oriented-Microservice-

Placement-With-Ding-Wang/09bc670eebe5d41038e2025e51f901f69719466a

[6]. Huang, Q., Wang, S., & Ding, Z. (2021). Autoscaling Method for Docker Swarm Towards Bursty

Workload. https://www.semanticscholar.org/paper/Autoscaling-Method-for-Docker-Swarm-Towards-

Bursty-Huang-Wang/45140cf07777d4f9b6221b1a736a672525caa6e3

