
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(6):136-146

Research Article ISSN: 2394 - 658X

136

Design and Build a CI/CD pipeline for Salesforce

Chirag Amrutlal Pethad

PetSmart.com, LLC, Stores and Services

Phoenix, Arizona, USA

ChiragPethad@live.com, ChiragPethad@gmail.com, Cpethad@petsmart.com

ABSTRACT

The document outlines the detailed steps to establish a robust CI/CD pipeline for Salesforce, integrate version

control, automate testing, and deployment tools. It outlines the Salesforce Deployment capabilities, and its

limitations. Key features of Jenkins, its benefits in implementing a CICD pipeline for Salesforce. Best practices

include using scratch orgs for development, maintaining a clean codebase, implementing a branching strategy,

and automating deployments with CI tools like Jenkins. Ensure security and compliance by managing credentials

securely and reviewing permissions. Monitor deployments and foster collaboration through documentation and

code reviews. A robust CICD implementation leads to higher quality releases, faster development cycles, and

reduced risk of errors during deployment. It allows organizations to deliver high-quality features faster and more

reliably, ultimately leading to better user satisfaction and business outcomes.

Keywords: Integration, Delivery, Deployment, Build, Tools, Automation, Version Control, DevOps, Build

pipeline, Source Driven Development.

__

INTRODUCTION

Digital transformation and the shift to online operations means companies are increasingly reliant on Salesforce to

manage many of their operations. New business requirements and opportunities are steadily increasing the

workloads for Salesforce teams. As Salesforce has grown in complexity over the years, so has the process for

deploying changes from sandbox to production. This added complexity has brought to light the limitations of

Salesforce change sets. Against this backdrop, teams are turning to CI/CD to automate manual workflows, helping

them to manage these growing workloads and get high-quality work released quickly to their end-users.

CI/CD is a real game-changer for the Salesforce ecosystem. In fact, it’s at the heart of DevOps, helping teams to

achieve faster, more reliable development and release cycles. You can increase productivity, improve code quality

and achieve faster releases by integrating CI/CD DevOps practices with your Salesforce development. Salesforce

DevOps leads to 46x more deployments, 2555x shorter lead times, 8x fewer change failures and 96x faster recovery

times. CI/CD processes lead to improved releases, fewer disruptions and greater agility. Tighter development

processes lead to more responsive, user-driven designs — and a more manageable Salesforce ecosystem. But while

most teams say they want to implement CI/CD for Salesforce, many struggle to see success.

Before discussing how to build a CI/CD pipeline, it’s important to define more clearly what are the current

capabilities Salesforce offers for Deployment and what we mean by CI/CD. Although commonly used in the

Salesforce ecosystem, “CI/CD” often refers to different automated processes: continuous integration, continuous

deployment, and continuous delivery. It’s worth pulling these terms apart a little first before we look at the benefits

and components of CI/CD and how to build a robust pipeline. This whitepaper provides a overview of CI/CD

capabilities, Challenges of implementing it in Salesforce, its Benefits and step by step guide to build CI/CD pipeline

with Jenkins for Salesforce.

OVERVIEW OF CI/CD

A. Continuous Integration

Continuous integration (or “CI”) is about automatically moving work items along a release pipeline, through

environments for combining and testing packages, before promoting them to production. Work items are brought

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

137

together, tested and validated, to make sure no issues arise on their release. In this way, automated testing and

validation reduce the time it takes for the team to review new work and makes sure that individual work items can

be deployed successfully to a new environment at any stage in the process.

B. Continuous Deployment

Continuous deployment is about immediately deploying changes to a downstream environment in your release

pipeline as soon as a change or work item has been approved and merged into version control. This makes sure the

latest changes are immediately reflected in a testing org or, in some cases, deployed directly to production. As a

mean to get closer to continuous delivery, continuous deployment automatically merges each change to its target

environment, as soon as it’s ready.

C. Continuous Delivery

Continuous delivery is the goal of CI/CD. It’s a culture or way of working (rather than a type of workflow), which

is about releasing added value and new functionality to your end-users as soon after the completion of the

development or customization work as possible. This reduction in lead times not only makes companies more agile

and flexible in delivering work quickly to meet changing priorities but also fosters an iterative way of working.

Small amounts of work are released continually, allowing for rapid feedback and easier testing than riskier, larger

releases.

OVERVIEW OF SALESFORCE DEPLOYMENT CAPABILITIES

Salesforce deployment capabilities refer to the methods and tools available for moving metadata and configurations

from one Salesforce environment (e.g., Sandbox, Developer Org) to another (e.g., Production). These capabilities

are critical for ensuring that customizations and configurations are consistently and accurately transferred across

environments. Here's a detailed overview of Salesforce deployment capabilities along with its limitations:

A. Change Sets

Change Sets are the most straightforward and commonly used method for deploying changes between related

Salesforce orgs, such as Sandboxes and Production.

1) Capabilities

• Point-and-Click Interface: Allows users to select components via the Salesforce UI and deploy them to a

connected org.

• Inbound/Outbound Change Sets: Outbound Change Sets are created in the source org, while Inbound Change

Sets are received and deployed in the target org.

• Component Selection: Users can select individual components like Apex classes, Visualforce pages, custom

objects, profiles, etc.

• Dependency Management: Automatically adds dependent components when a primary component is selected.

2) Limitations

• Manual Process: Requires manual creation and deployment, which can be time-consuming and error prone.

• Environment Bound: Only works between connected environments (e.g., Sandbox to Production), not between

unrelated orgs.

• No Version Control: Change Sets don’t integrate with version control systems, limiting collaboration and

tracking.

• Limited Automation: No built-in support for CI/CD pipelines.

B. Salesforce Metadata API

The Salesforce Metadata API allows developers to retrieve, deploy, create, update, or delete customization

information, such as custom object definitions and page layouts, for your organization.

1) Capabilities

• Metadata Deployment: Supports deployment of most metadata types via files in XML format.

• Automated Deployment: Can be scripted to automate deployments as part of a CI/CD pipeline.

• Component Retrieval: Retrieve metadata from an org and save it locally or in a version control system.

• Partial Deployments: Supports partial deployments, where only a subset of metadata is deployed.

2) Limitations

• Unsupported Metadata: Not all metadata types are supported. Some require manual migration.

• Size Limits: Salesforce imposes limits on the size of a single deployment request, both in terms of file size and

number of components.

• Complex Error Handling: Errors during deployment can be complex to resolve, especially with large

deployments.

• Order of Deployment: Some metadata must be deployed in a specific order due to dependencies (e.g., deploying

custom fields before deploying a custom object). This can complicate the deployment process.

• Profiles and Permission Sets: Deploying profiles and permission sets can be challenging due to the vast number

of dependencies and the potential for overwriting existing settings unintentionally.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

138

• Non-Destructive Changes: The Metadata API is inherently non-destructive, meaning it cannot delete components

during deployment (e.g., removing a field from a custom object). You must manually delete these items post-

deployment.

• Partial Success: Deployments can succeed partially, leading to inconsistent states across environments. This

requires careful monitoring and often additional manual intervention to correct.

C. Salesforce DX (Developer Experience)

Salesforce DX is a modern set of tools and features that improve the development lifecycle on Salesforce, enabling

version control, continuous integration, and automated testing.

1) Capabilties

• Scratch Orgs: Temporary, disposable orgs used for development and testing. They mirror production

environments closely.

• SFDX CLI: Command-line interface for interacting with Salesforce environments, automating tasks like creating

orgs, pushing code, running tests, etc.

• Source-Driven Development: Supports a source-driven approach where metadata is stored in a version control

system, enabling better collaboration and rollback.

• Modular Development: Encourages breaking down a large org’s metadata into smaller packages, making

deployments more manageable.

2) Limitations

• Complexity: The setup and management of Salesforce DX, especially for existing, complex orgs, can be

challenging.

• Limited Support for Non-Scratch Orgs: While powerful for Scratch Orgs, Salesforce DX’s capabilities are

more limited when dealing with Sandboxes or Production environments.

• Learning Curve: Developers and admins familiar with Change Sets or other traditional methods may find

Salesforce DX initially complex.

D. Ant Migration Tool

The Ant Migration Tool is a command-line utility based on Apache Ant that uses the Metadata API to move

metadata between a local directory and a Salesforce org.

1) Capabiilties

• Automated Deployment: Ideal for scripting and automating deployments, making it suitable for CI/CD

processes.

• XML-Based: Configuration is done using XML files, which define the metadata components to deploy or

retrieve.

• Version Control Integration: Works well with version control systems, enabling tracking and collaboration on

deployments.

2) Limitations

• Complex Configuration: Requires knowledge of XML and Ant scripting, which can be complex for users

unfamiliar with these technologies.

• Limited Error Reporting: Error messages can be cryptic, making it challenging to troubleshoot deployment

issues.

E. Workbench

Workbench is a web-based suite of tools for interacting with Salesforce, including support for deploying metadata

using the Metadata API.

1) Capabilities

• Simple Interface: Provides a user-friendly interface for deploying metadata and running queries.

• Metadata API: Supports deploying packages using the Metadata API, retrieving metadata, and running

SOQL/SOSL queries.

• Sandbox and Production Support: Can be used to deploy changes directly to Sandboxes or Production.

2) Limitations

• Limited Automation: Workbench is more suited for ad-hoc deployments and is not ideal for automated CI/CD

pipelines.

• Manual Process: Requires manual operation, which may not be scalable for large or frequent deployments.

F. Packaging (Unlocked Packages, Managed Packages)

Salesforce packaging allows developers to bundle related components and deploy them as a single package.

1) Capabilities

• Managed Packages: Ideal for ISVs (Independent Software Vendors) to distribute applications. Managed

packages are locked after release, with specific update procedures.

• Unlocked Packages: Provides more flexibility than managed packages, allowing for updates and changes after

deployment, making them suitable for internal development.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

139

• Version Control: Packages can be versioned, enabling easier tracking of changes and rollback to previous

versions if necessary.

2) Limitations

• Learning Curve: Packaging, especially managed packages, has a steep learning curve and can be complex to set

up correctly.

• Metadata Restrictions: Not all metadata types can be included in packages, especially in managed packages.

• Dependency Management: Managing dependencies between packages and handling version upgrades can be

challenging.

G. Visual Studio Code with Salesforce Extensions

Visual Studio Code (VS Code) with Salesforce Extensions provides a powerful, code-centric environment for

Salesforce development and deployment.

1) Capabilities

• Integrated Development Environment: Allows developers to write, deploy, and test code directly from VS

Code.

• Salesforce CLI Integration: Tightly integrated with Salesforce DX and the CLI, enabling streamlined

development and deployment workflows.

• Source Control Integration: Works well with Git and other version control systems, supporting source-driven

development and CI/CD.

2) Limitations

• Setup Complexity: Requires initial setup and configuration, including installation of Salesforce extensions and

CLI.

• Learning Curve: Developers unfamiliar with IDEs or VS Code may face a learning curve.

H. Salesforce CLI (Command Line Interface)

The Salesforce CLI (SFDX) is a powerful tool that enables automation of various Salesforce tasks, including

deployments, testing, and org management.

1) Capabilities

• Scripting and Automation: Supports scripting deployments and other tasks, making it integral to CI/CD

pipelines.

• Org Management: Create, manage, and delete Scratch Orgs, Sandboxes, and Production orgs.

• Testing and Validation: Run Apex tests, validate deployments, and check code coverage.

2) Limitations

• Command Complexity: Requires knowledge of command-line interfaces and scripting, which can be challenging

for non-developers.

• Limited UI: Since it's command-line-based, there’s no graphical interface, which may be less intuitive for users

accustomed to point-and-click tools.

I. Third-Party Tools (e.g., Copado, Gearset, AutoRABIT)

Various third-party tools extend Salesforce’s native deployment capabilities, providing advanced features like

CI/CD, environment management, and automated testing.

1) Capabilities

• Advanced CI/CD: Comprehensive CI/CD pipelines tailored specifically for Salesforce environments.

• Environment Management: Tools for managing multiple Salesforce environments, including Sandboxes and

Production.

• Automated Testing: Support for automated testing, including test coverage analysis and test data management.

• Rollback Features: Some tools offer rollback capabilities, allowing for easier recovery from failed deployments.

2) Limitations

• Cost: These tools often come with additional licensing costs.

• Complexity: Some tools may introduce additional complexity into the deployment process, requiring training and

setup.

OVERVIEW OF JENKINS

Jenkins is an open-source automation server widely used for building, testing, and deploying software. It plays a

central role in continuous integration (CI) and continuous delivery (CD) processes, allowing developers to automate

various stages of software development and deployment. Jenkins is a powerful, flexible, and widely adopted tool for

automating software development processes. Its ability to integrate with a wide range of tools and technologies

makes it an essential part of modern DevOps practices, enabling continuous integration and continuous delivery.

A. Key Features

• Open Source

O Jenkins is open source, making it free to use and customize according to your needs. It has a large community

that contributes plugins and provides support.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

140

• Extensibility through plugins

O Jenkins offers a vast ecosystem of over 1,500 plugins that extend its capabilities. Plugins cover various stages of

the CI/CD pipeline, such as version control, build tools, testing frameworks, deployment, and notifications.

• Continuous Integration (CI)

O Jenkins automates the process of integrating code changes into a shared repository frequently, which helps in

detecting issues early and improving code quality.

• Continuous Delivery (CD)

O Jenkins can automate the deployment process, ensuring that software is always ready for release. It supports the

continuous delivery pipeline from code commit to production deployment.

• Pipeline as Code

O Jenkins pipelines can be defined as code using a domain-specific language (DSL) based on Groovy. This

approach, known as "Pipeline as Code," allows for more complex workflows and versioning of the pipeline

configuration.

• Distributed Builds

O Jenkins supports distributed builds, enabling the workload to be distributed across multiple machines (known as

Jenkins agents or nodes). This capability improves build efficiency and speeds up the CI/CD process.

• Integration with Version Control Systems (VCS)

O Jenkins integrates with popular version control systems like Git, Subversion, Mercurial, and more. It can trigger

builds automatically when changes are detected in the repository.

• Support for Multiple Build Tools

O Jenkins supports various build tools, including Maven, Gradle, Ant, and even custom shell scripts, allowing it to

fit into different development environments.

• Automated Testing

O Jenkins can automatically run tests after each build to ensure that the codebase remains stable. It integrates with

various testing frameworks like JUnit, TestNG, Selenium, and others.

• Notifications and Reporting

O Jenkins can send notifications about build status via email, Slack, or other communication tools. It also generates

detailed reports on build and test results.

• User-Friendly Interface

O Jenkins provides a web-based GUI that is user-friendly and accessible. It allows users to configure jobs, view

build statuses, monitor logs, and manage plugins.

• Security

O Jenkins has robust security features, including role-based access control (RBAC), LDAP integration, and support

for securing communication via SSL.

• Cross-Platform

O Jenkins is written in Java and can run on various operating systems, including Windows, macOS, Linux, and

Unix.

• Community and Documentation

O Jenkins has a large and active community that contributes to its plugin ecosystem and provides support through

forums and documentation.

B. How Jenkins Work

• Jenkins Server (Master) and Agents (Slaves)

O Jenkins operates in a master-agent architecture. The Jenkins master coordinates the activities, manages the jobs,

and schedules the builds. Agents perform the actual work (e.g., building and testing code).

• Jobs and Pipelines

O A job in Jenkins is a task that the server performs. Jobs can be simple, like running a script, or complex, like

executing a series of steps in a pipeline.

O Pipelines represent a sequence of steps that the job will execute. Pipelines can be simple or complex, supporting

branching, parallel execution, and conditional logic.

• Triggers

O Jenkins can trigger builds based on various events, such as a code commit in a version control system, a specific

time (cron jobs), or a manual trigger by a user.

• Build Execution

O Jenkins pulls the latest code from the version control system, executes the build, and runs any associated tests. If

the build succeeds, Jenkins can proceed to the next stage, such as deployment.

• Artifact Management

O Jenkins can store build artifacts (e.g., binaries, packages) and integrate with artifact repositories like Nexus or

Artifactory.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

141

• Deployment

O Jenkins can deploy applications to various environments (e.g., development, staging, production) automatically

after a successful build.

BENEFITS OF CI/CD IMPLEMENTATION FOR SALESFORCE

Implementing Continuous Integration and Continuous Delivery (CI/CD) in Salesforce offers several benefits that

can significantly improve the development, testing, and deployment processes. Here's a breakdown of the key

benefits:

A. Faster and More Reliable Deploymentsr

• Automated Deployments: CI/CD automates the deployment process, reducing the time and effort required to

move changes from development to production.

• Consistency: Automation ensures that deployments are consistent across environments, reducing the risk of

human error and configuration drift.

B. Improved Code Quality

• Continuous Integration: Developers frequently integrate their code changes into a shared repository, allowing for

early detection of integration issues.

• Automated Testing: CI/CD pipelines can automatically run tests on each integration, ensuring that new changes

do not introduce bugs or break existing functionality.

C. Enhanced Collaboration

• Version Control Integration: By integrating CI/CD with version control systems like Git, teams can work more

collaboratively, with better tracking of changes and easier management of code reviews.

• Branching Strategies: Teams can use branching strategies (e.g., feature branches, pull requests) to work on new

features or fixes in isolation, reducing conflicts and making the integration process smoother.

D. Faster Feedback Loops

• Immediate Feedback: Developers receive immediate feedback on their code changes through automated builds

and tests, allowing them to address issues quickly.

• Reduced Cycle Time: The time between making a change and knowing whether it works is significantly reduced,

accelerating the development process.

E. Increased Deployment Frequency

• Frequent Releases: CI/CD enables more frequent and smaller releases, allowing new features and bug fixes to

reach users faster.

• Safe Rollbacks: In the event of an issue, automated rollback mechanisms can quickly revert to the previous stable

state, minimizing downtime and impact on users.

F. Higher Confidence in Deployments

• Automated Testing: Extensive automated testing (unit tests, integration tests, regression tests) in the pipeline

ensures that code is thoroughly validated before deployment.

• Deployment Validation: CI/CD pipelines can include validation steps that check for deployment readiness, such

as code coverage thresholds, static code analysis, and manual approval gates.

G. Improved Resource Management

• Environment Management: CI/CD allows for better management of Salesforce environments (Sandboxes,

Scratch Orgs), enabling automated creation, testing, and deletion of environments.

• Optimized Use of Sandboxes: By automating the provisioning and de-provisioning of Sandboxes, organizations

can make more efficient use of their available environments.

H. Reduced Risk and Downtime

• Incremental Deployments: CI/CD supports deploying smaller, incremental changes, reducing the risk of large,

complex deployments.

• Quick Recovery: In case of issues, automated rollback and quick fix deployments help reduce downtime and

ensure business continuity.

I. Scalability

• Handling Complex Projects: CI/CD is particularly beneficial for large Salesforce projects with multiple teams

working on different features. It ensures that all changes are integrated and tested systematically.

• Parallel Development: Teams can work on multiple features or projects simultaneously without worrying about

integration conflicts or deployment issues.

J. Better Compliance and Auditability

• Automated Documentation: CI/CD pipelines can generate reports and logs for each deployment, providing a

clear audit trail of what was deployed, when, and by whom.

• Compliance Checks: Automated checks can be integrated into the pipeline to ensure that code complies with

organizational policies or regulatory requirements before it is deployed.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

142

K. Increased Developer Productivity

• Focus on Innovation: With CI/CD automating repetitive tasks like testing and deployments, developers can focus

more on writing code and innovating, rather than managing deployments.

• Reduced Context Switching: Developers can merge and deploy changes frequently, reducing the cognitive load

of managing long-lived branches or large sets of changes.

L. Cost Savings

• Reduced Manual Effort: Automation reduces the need for manual intervention in testing and deployments,

saving time and reducing costs associated with errors.

• Faster Time to Market: By speeding up the development and deployment process, organizations can bring new

features and products to market faster, gaining a competitive edge.

IMPLEMENTATION PLAN

The implementation plan involves setting up a Google Cloud Pub/Sub topic, configuring service accounts and

permissions, and implementing Java application to subscribe to the Pub/Sub topic and then publish / forward those

messages to Salesforce endpoint. The process includes:

A. Setting up Jenkins

Install Jenkins and Install required plugins

B. Setting up Git Repository

Setup Git Repository for Salesforce code and Configuration files.

C. Setting up Salesforce

Create a Self-Signed Certificate and Key pair. Create a Connected app and configure the Certificate and key pair.

D. Create and Configure Jenkins Pipeline

Create and Configure new Pipeline.

STEP BY STEP IMPLEMENTATION

A. Setting up Jenkins

Step 1: Install Jenkins

• Download and install Jenkins from the official website [1].

• Choose the appropriate version for your operating system (Windows, Linux, macOS).

• Follow the installation instructions specific to your platform.

Step 2: Configure Jenkins

• Start Jenkins by running the appropriate command for your OS.

• Open a web browser and go to http://<<hostname>>:8080.

• Unlock Jenkins using the initial admin password (found in the Jenkins installation directory).

• Install suggested plugins to set up a basic Jenkins environment.

• Create an admin user and complete the initial setup.

Step 3: Install Required Jenkins Plugin

• Go to Manage Jenkins -> Manage Plugins

• Install the following plugins:

o Git Plugin: For pulling code from the repository.

o Pipeline Plugin: For creating and managing Jenkins pipelines.

o Salesforce DX CLI Plugin (if available) or install Salesforce CLI manually on the Jenkins server.

o Email Extension Plugin: For email notifications.

Step 4: Install Salesforce CLI on Jenkins Server

Follow the instructions to install the Salesforce CLI (SFDX) on the Jenkins server from Salesforce CLI

documentation [2].

• Linux

• Windows

Download the installer from the Salesforce CLI official site and run the msi / exe file on your Jenkins server.

• Mac

Verify the installation by running “sfdx –version” command in the terminal.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

143

B. Setting up Git Repository

• Use GitHub, GitLab, or Bitbucket to create a repository for your Salesforce metadata.

• Initialize the repository locally and commit your Salesforce code and configuration files using Salesforce DX.

• Optionally, set up webhooks in your Git repository to trigger the Jenkins pipeline on specific events (like push,

pull request, etc.).

C. Setting up Salesforce

Step 1: Create a Self-Signed Certificate and Key Pair

• Use OpenSSL or a similar tool to generate an RSA private key and certificate:

• server.key: The private key (keep this secure).

• server.crt: The public certificate (used in the Connected App).

Step 2: Create a Connected App on Salesforce

• Log in to your Salesforce Dev Hub org.

• Navigate to Setup → App Manager → New Connected App.

• Configure the Connected App:

1. Connected App Name: Jenkins Integration (or any name)

2. API Name: Jenkins_Integration

3. Contact Email: Your email

4. Enable OAuth Settings: Check this option

5. Callback URL: You can use http://localhost (this is not used in the JWT flow but is required for setup)

6. Selected OAuth Scopes: Select Full access (full) and Perform requests on your behalf at any time

(refresh_token, offline_access)

• Use digital signatures: Check this box and upload the certificate (public key -> server.crt) you generated.

• Save the Connected App.

• After saving, make note of the Consumer Key (Client ID) as it will be needed to configure Jenkins pipeline.

D. Create and Configure Jenkins Pipeline

Step 1: Create a New Pipeline Job in Jenkins:

• Go to Jenkins Dashboard > New Item.

• Enter a name for your pipeline (e.g., Salesforce-CI-CD).

• Select Pipeline and click OK.

Step 2: Configure Jenkins Pipeline

• In the General section, add a description for your pipeline job.

• Under the Pipeline section, select “Pipeline script from SCM”.

• Choose Git as the SCM and provide the repository URL.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

144

• Specify the branch to build (e.g., main).

Step 3: Create Salesforce Authentication Credentials

• Go to Manage Jenkins > Manage Credentials.

• Select the appropriate domain (e.g., Jenkins or Global).

• Click Add Credentials and choose Secret File.

• Upload and store the private key file created earlier using openssl as the Jenkins Secret File under name/Id as

SALESFORCE_AUTH_URL.

Step 4: Setup Environment Variables in Jenkins

Set following variables in Jenkins environment:

• SF_USERNAME—The username for the Dev Hub org, such as juliet.capulet@myenvhub.com.

• SF_INSTANCE_URL—The login URL of the Salesforce instance that hosts the Dev Hub org. The default is

https://login.salesforce.com. We recommend that you update this value to the My Domain login URL for the Dev

Hub org. You can find an org’s My Domain login URL on the My Domain page in Setup.

• SF_CONSUMER_KEY—The consumer key that was returned after you created a connected app in your Dev Hub

org.

• SERVER_KEY_CREDENTALS_ID—The credentials ID for the private key file that you stored in the Jenkins

Admin Credentials interface.

• TEST_LEVEL-The test level for your package, such as RunLocalTests.

Step 5: Create a Jenkinsfile in your Git repository

• Add a Jenkinsfile to the root of your Git repository. This file will define the stages and steps of your pipeline.

• Here is an example of a Jenkinsfile for a Salesforce CI/CD pipeline:

Add Steps for test and deployment

E. Run and Test the Pipeline

• Go to your pipeline job and click on Build Now.

• Monitor the pipeline's progress and console output.

• Check the console output to see if all stages are executed successfully.

• If there are any issues, Jenkins will log them, and you can troubleshoot accordingly.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

145

F. Automate Notifications and Feedback

• Go to Manage Jenkins > Configure System.

• Under the Email Notification section, configure the SMTP server.

• Use the Email Extension Plugin to set up email notifications for build successes and failures.

• In your Jenkinsfile, use the post section to send notifications:

G. Advanced Configuration

• Add Approval Gates:

O Use Jenkins input steps to add manual approval gates before deploying to production.

• Implement Rollback Strategy:

O Add a rollback stage in your pipeline in case of deployment failure.

O Use Salesforce CLI to rollback using sfdx force:source:delete or other relevant commands.

H. Optimize and Maintain your Pipeline

• Optimize the Build Times:

O Use parallel stages to run independent tasks concurrently.

O Use caching to speed up repetitive tasks (e.g., Salesforce metadata retrieval).

O Only build and test the changes made since the last successful build. This can significantly reduce build times,

esp cially for large projects.

• Improve Error Handling and Resilience

O Add error handling in the Jenkinsfile to gracefully handle failures and provide meaningful messages. Use the

try/catch construct for error-prone stages.

O Implement retry logic for stages prone to transient issues (like network failures).

• Regular Maintenance:

O Keep Jenkins, plugins, and Salesforce CLI updated.

O Periodically review and refactor the pipeline for improvements.

• Monitor and Analyze Pipeline Performance

O Install plugins like Monitoring, Prometheus, or Jenkins Performance Plugin to track build times, success rates,

and resource utilization.

O Analyze performance metrics to identify bottlenecks and optimize pipeline stages.

O Generate reports for build and test performance and monitor trends over time. Use tools like JUnit or JUnit Test

Results Analyzer for test reporting.

SECURITY CONSIDERATIONS

• Secure Credentials:

O Use Jenkins credentials securely and avoid hardcoding them in the Jenkinsfile.

O Apply role-based access control (RBAC) to restrict access to sensitive jobs and settings.

• Audit and Logs:

O Regularly audit logs and Jenkins user activity to detect and prevent unauthorized access or changes.

BEST PRACTICES

A. ersion Control Everything

• Source of Truth: Treat your version control system (VCS), such as Git, as the single source of truth for all

metadata and code. This includes Apex classes, Lightning components, Visualforce pages, configuration, and even

declarative changes.

• Commit Frequently: Encourage developers to commit code frequently to avoid large, complex merges and to

facilitate continuous integration.

• Use Feature Branches: Use feature branches for new features, bug fixes, or experiments. This allows you to

isolate changes until they are ready to be merged into the main branch.

B. Automate Testing

• Unit Tests: Write unit tests for all Apex code to ensure high code coverage. Salesforce requires 75% code

coverage for deployment to production but aim for more to ensure robustness.

Pethad CA Euro. J. Adv. Engg. Tech., 2021, 8(6):136-146

146

• Static Code Analysis: Integrate static code analysis tools (e.g., PMD, CodeScan) into your CI pipeline to enforce

coding standards and detect potential issues early.

• Automated Regression Testing: Regularly run automated tests (e.g., Selenium, Provar) to ensure that new

changes don’t break existing functionality.

C. Use Scratch Org for Development and Testing

• Ephemeral Environments: Use Salesforce DX scratch orgs as ephemeral, disposable environments for

development and testing. This aligns well with CI/CD practices by ensuring that each developer or pipeline runs in a

clean, isolated environment.

• Source-Driven Development: With scratch orgs, adopt a source-driven development model where you deploy

source code from version control to the org, rather than retrieving metadata from the org to version control.

D. Continuous Integration and Automated Builds

• CI Pipeline: Set up a CI pipeline to automatically build, test, and validate changes whenever code is committed to

the repository.

• Build Validation: Include validation steps such as static code analysis, unit tests, and deployment to a scratch org

in your CI pipeline.

• Fail Fast: Configure your CI pipeline to fail fast if there are issues with the build, tests, or deployment. This helps

to quickly identify and fix problems.

E. Adopt Salesforce DX

• Embrace SFDX: Salesforce DX (Developer Experience) is designed to support modern development practices,

including CI/CD. Adopt SFDX tools and practices, such as modular package development, to streamline your

CI/CD pipeline.

• Second-Generation Packaging (2GP): Use 2GP for modular and reusable packages that can be independently

versioned and deployed

CONCLUSION

• Salesforce provides a robust set of tools for deploying metadata and configurations across environments, each

with its own strengths and limitations. The choice of deployment method often depends on factors like the

complexity of the Salesforce environment, the need for automation, the size of the team, and the frequency of

deployments. Integrating these tools into a cohesive deployment strategy can help ensure smooth, error-free

deployments and a more efficient development process.

• This setup provides a robust CI/CD pipeline using Jenkins for Salesforce, ensuring streamlined development,

testing, and deployment. You can customize this further based on your team's requirements and the specific

complexities of your Salesforce environment.

• By applying these optimization techniques, you can reduce build times, increase reliability, and improve the

overall efficiency of your Jenkins CI/CD pipeline for Salesforce. Regularly monitoring performance and

iteratively refining the pipeline will help maintain a fast and effective delivery process.

• Implementing CI/CD in Salesforce not only streamlines the development and deployment process but also

enhances code quality, collaboration, and overall productivity. It allows organizations to deliver high-quality

features faster and more reliably, ultimately leading to better user satisfaction and business outcomes.

• By following the best practices listed in this document, you can ensure a robust, efficient, and reliable CI/CD

process in Salesforce. This leads to higher quality releases, faster development cycles, and reduced risk of

errors during deployment. Implementing CI/CD effectively requires a combination of the right tools,

processes, and cultural practices within your development team.

REFERENCES

[1]. Jenkins - https://www.jenkins.io/

[2]. Salesforce CLI Documentation - https://developer.salesforce.com/tools/sfdxcli

[3]. Sfdx Jenkins Developer Guide - https://developer.salesforce.com/docs/atlas.en-

us.sfdx_dev.meta/sfdx_dev/sfdx_dev_ci_jenkins.htm

[4]. Apex Integration - https://developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode/apex_integration_intro.htm

