
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(3):59-62

Research Article ISSN: 2394 - 658X

59

Efficient Data Transformation on Google Cloud Storage: A Python

Library for Converting CSV to Parquet

Preyaa Atri

Preyaa.atri91@gmail.com

ABSTRACT

The ever-growing volume of data in various formats poses significant challenges for storage optimization and

efficient analytics in cloud environments. Parquet, a columnar data format, offers substantial advantages over

traditional CSV (Comma-Separated Values) files in terms of storage efficiency, query performance, and data

compression. This paper explores a Python library, gcs_convert_csv_to_parquet, designed to seamlessly

convert CSV files stored in Google Cloud Storage (GCS) buckets to Parquet format. We analyze the library's

functionalities, potential use cases, and its impact on data engineering workflows within the GCP ecosystem.

Keywords: Google Cloud Storage, Parquet, CSV, Data Transformation, Python Libraries, Big Data

__

INTRODUCTION

Data management in cloud platforms plays a pivotal role in modern data science and analytics pipelines. The

rapid growth of cloud computing services has increased data storage and processing demands, leading to the

development of next-generation storage services like cloud storage (Jiang et al., 2016). Cloud storage platforms

attract libraries and enterprises to store and manage their data efficiently (Zeng & Xiong, 2018; Taha et al.,

2019). Google Cloud Storage (GCS) offers a scalable and cost-effective solution for storing large datasets in

various formats. However, efficient processing and analysis of this data often require optimized storage formats.

Parquet, a columnar data format gaining wide adoption, addresses this need by storing data in compressed

columns rather than rows, leading to significant benefits for data manipulation and querying (Wang et al., 2010).

This paper presents a Python library, gcs_convert_csv_to_parquet, designed to streamline the conversion of

CSV files stored in GCS buckets to Parquet format. By leveraging the functionalities of established libraries like

google-cloud-storage, pandas, and pyarrow, the library provides a user-friendly and efficient solution for data

transformation within the GCP environment.

PROBLEM STATEMENT

While CSV files offer a simple and widely compatible format for data storage, their row-based structure can

hinder performance during data analytics tasks. Traditional relational databases often struggle with querying

large CSV files due to the need to scan entire rows for specific values. Additionally, CSV files can be less

efficient in terms of storage space compared to compressed columnar formats like Parquet.

This inefficiency in storage and querying becomes particularly critical when dealing with big data on cloud

platforms like GCS. Converting CSV files to Parquet format addresses these limitations by offering:

• Improved Storage Efficiency: Parquet utilizes compression techniques to significantly reduce storage

footprint compared to uncompressed CSV files.

• Faster Data Retrieval: Columnar storage in Parquet allows for efficient querying by targeting specific

columns, leading to faster retrieval times, especially for analytical workloads.

Atri P Euro. J. Adv. Engg. Tech., 2021, 8(3):59-62

60

• Optimized Data Processing: Parquet's schema definition facilitates data validation and simplifies

processing tasks within analytical frameworks like Apache Spark.

SOLUTION: THE GCS_CONVERT_CSV_TO_PARQUET LIBRARY

The gcs_convert_csv_to_parquet library offers a versatile solution for converting CSV files stored in GCS

buckets to Parquet format. Here's an overview of its key functionalities:

• GCS Integration: The library utilizes the google-cloud-storage library to seamlessly access and

manage data within GCS buckets.

• CSV Handling: It leverages the pandas library to efficiently read and manipulate CSV data stored

within GCS.

• Parquet Conversion: The library utilizes the pyarrow library to convert the pandas DataFrame into an

Arrow Table, enabling efficient conversion to Parquet format.

• GCS Upload: The converted Parquet file is uploaded back to the GCS bucket using the google-cloud-

storage library.

• Optional Output Folder: Users can specify an output folder within the bucket to store the resulting

Parquet file, promoting better data organization.

FUNCTIONALITY

The "Convert CSV to Parquet on Google Cloud Storage" library offers a function to convert CSV files stored in

GCS buckets to Parquet format and upload them back to the same bucket. Here's a detailed breakdown of the

arguments it takes:

• bucket_name (Required): The name of the GCS bucket containing the CSV file.

• csv_file (Required): The name of the CSV file to convert.

• parquet_file (Required): The desired name for the output Parquet file.

• output_folder (Optional): The folder within the bucket to store the Parquet file. If None, it will be

stored at the root level.

INSTALLATION

The library requires the following external libraries:

• google-cloud-storage

• pandas

• pyarrow

To install gcs_convert_csv_to_parquet Library and its dependencies, use the below command:

USAGE

The library provides a straightforward function gcs_convert_csv_to_parquet to perform the conversion. Here's

an example of its usage:

Bash

pip install google-cloud-storage pandas pyarrow #installs dependencies

pip install gcs_convert_csv_to_parquet #installs gcs_convert_csv_to_parquet Library

Atri P Euro. J. Adv. Engg. Tech., 2021, 8(3):59-62

61

This code snippet converts a CSV file named "data.csv" stored in the bucket "your_bucket_name" to a Parquet

file named "data.parquet". If the output_folder argument is set to "processed_data", the Parquet file will be

uploaded to that folder within the bucket. Upon successful conversion and upload, the library will print a

confirmation message.

USES AND IMPACT

The gcs_convert_csv_to_parquet library offers significant advantages for data engineering workflows within the

GCP ecosystem. Here are some potential use cases:

• Data Warehousing: By converting CSV data ingested into GCS to Parquet format, data warehouses

built on GCP services like BigQuery can benefit from faster query performance and improved storage

efficiency.

• Data Lake Optimization: Data lakes often store data in various formats. Converting CSV files within

a data lake to Parquet can enhance the overall efficiency of data exploration and analytics tasks.

• Machine Learning Pipelines: Many machine learning frameworks leverage Parquet for efficient data

loading and feature engineering. This library simplifies data transformation within machine learning

pipelines that utilize GCS for data storage.

By facilitating seamless conversion of CSV files to Parquet format, the library contributes to:

• Reduced Storage Costs: The compressed nature of Parquet files leads to cost savings on cloud storage

resources.

• Enhanced Query Performance: Data warehouses and analytical tools can leverage Parquet's

columnar structure for faster data retrieval.

• Streamlined Data Pipelines: The library simplifies data transformation tasks within GCP workflows,

promoting data engineering efficiency.

DEPENDENCIES AND CONSIDERATIONS

The library leverages three external dependencies:

• google-cloud-storage: This library provides Python functions to interact with Google Cloud Storage

buckets and objects.

• pandas: A popular Python data analysis library used for loading and manipulating the CSV data.

• pyarrow: Enables efficient conversion of pandas DataFrames to Apache Arrow Tables, which are the

foundation for Parquet files.

Important considerations when using the library:

• Authentication: Ensure you have proper authentication set up to access Google Cloud Storage.

• CSV Format: The library assumes the CSV file is valid and well-formatted.

• Error Handling: The library includes error handling to catch potential exceptions during conversion

or upload.

CONCLUSION

The "Convert CSV to Parquet on Google Cloud Storage" library serves as a valuable tool in cloud-based data

engineering. Its ease of use, coupled with the performance and storage advantages of Parquet, significantly

enhances data workflows. By converting CSV data into the optimized Parquet format, the library facilitates

Python
from gcs_convert_csv_to_parquet import gcs_convert_csv_to_parquet

Replace with your values

bucket_name = "your_bucket_name"

csv_file = "your_csv_file.csv"

parquet_file = "your_parquet_file.parquet"

output_folder = "your_output_folder" # Optional

gcs_convert_csv_to_parquet(bucket_name, csv_file, parquet_file, output_folder)

Atri P Euro. J. Adv. Engg. Tech., 2021, 8(3):59-62

62

faster querying, reduced storage costs, and greater data consistency within big data environments hosted on

Google Cloud Storage.

Future Scope of Research

The work on this library opens avenues for further research and development:

• Schema Evolution: Investigate robust schema evolution mechanisms for Parquet files generated by the

library, ensuring flexibility in handling changes to the underlying data structure over time.

• Versioning: Explore versioning strategies for the converted Parquet files, enabling users to track

historical data snapshots and potentially revert changes if needed.

• Advanced Optimization: Research and implement additional optimization techniques, such as

dictionary encoding and advanced compression algorithms found in Parquet, to further minimize file

sizes and improve query performance.

• Real-time Data Transformation for AI Applications: Extend the library to support real-time or near-

real-time conversion of streaming CSV data to Parquet. This would enable the development of AI

applications that can process and analyze data as it arrives, facilitating real-time decision-making and

predictions.

• Optimized Data Partitioning for AI Training: Implement intelligent data partitioning strategies

within the library to optimize data distribution for parallel AI model training. This could involve

partitioning data based on features, labels, or other relevant criteria to improve training efficiency and

model performance.

• Distributed Processing for Large-Scale AI Training: Investigate the integration of the library with

distributed processing frameworks like Apache Spark or Dask. This would allow for parallel

conversion of massive CSV datasets to Parquet, enabling efficient training of AI models on large-scale

datasets within the GCS environment.

By incorporating these research directions, the gcs_convert_csv_to_parquet library can evolve into a powerful

tool that not only optimizes data storage and querying but also accelerates the development and deployment of

AI models in the cloud. This would contribute to the growing field of AI-driven data engineering and unlock

new possibilities for data-powered innovation across various industries.

REFERENCES

[1]. C. Wang, Q. Wang, K. Ren, & W. Lou, "Privacy-preserving public auditing for data storage security in

cloud computing", 2010 Proceedings IEEE INFOCOM, 2010.

https://doi.org/10.1109/infcom.2010.5462173

[2]. X. Jiang, Z. Wang, D. Hui-liang, & X. Du, "Research on the key technology of the cloud platform data

security", Proceedings of the 2015 5th International Conference on Computer Sciences and Automation

Engineering, 2016. https://doi.org/10.2991/iccsae-15.2016.189

[3]. M. Zeng and Q. Xiong, "An adaptive fault-tolerant strategy in library cloud storage system",

Proceedings of the 2018 8th International Conference on Management, Education and Information

(MEICI 2018), 2018. https://doi.org/10.2991/meici-18.2018.47

[4]. H. Taha, N. Aknin, & K. Kadiri, "A novel model of data storage service in the architecture cloud

storage", International Journal of Online and Biomedical Engineering (iJOE), vol. 15, no. 07, p. 66,

2019. https://doi.org/10.3991/ijoe.v15i07.10094

[5]. Apache Parquet, "File Format Documentation," [Online]. Available:

https://parquet.apache.org/docs/file-format/

[6]. The Pandas Development Team, "User Guide: Using PyArrow," in Pandas Documentation, [Online].

Available:https://pandas.pydata.org/docs/user_guide/pyarrow.html.

[7]. Pandas development team. [Online]. pandas.DataFrame.to_gbq. Available:

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_gbq.html

https://doi.org/10.1109/infcom.2010.5462173
https://doi.org/10.2991/iccsae-15.2016.189
https://doi.org/10.2991/meici-18.2018.47
https://doi.org/10.3991/ijoe.v15i07.10094
https://parquet.apache.org/docs/file-format/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_gbq.html

