European Journal of Advances in Engineering and Technology, 2021, 8(12):95-101

Research Article

ISSN: 2394 - 658X

Multiple Regression Analysis for Predictive Modeling

Kailash Alle

Sr. Software Engineer, Comscore Inc kailashalle@gmail.com

ABSTRACT

This study explores predicting customer data consumption in the telecommunications industry using multi-linear regression. Reducing customer churn, or customer loss, is crucial for telecom companies. Here, we propose a method to forecast a customer's annual data usage based on various factors. The approach utilizes multi-linear regression, a statistical technique that analyzes the linear relationship between a dependent variable (data usage) and multiple independent variables (customer characteristics). We'll use Python for its user-friendly data science tools. The data preparation process involves loading customer information from a dataset. This data will include demographics, service plans, survey responses on customer service satisfaction, and most importantly, annual data usage. We'll clean the data by addressing missing values, outliers, and encoding categorical variables (e.g., yes/no answers) into numerical values. By analyzing this data, we can identify factors that influence data consumption. The resulting model will predict a customer's data usage based on these factors, enabling telecom companies to better understand customer needs and potentially develop targeted data plans to reduce churn.

Keywords: Telecoms, Big Data, Customer churn, Data usage forecasting, Machine learning, Multi-linear regression.

INTRODUCTION

In today's data-driven world, telecommunications companies face a constant challenge: keeping up with skyrocketing customer data usage while minimizing customer churn, the dreaded phenomenon of customers switching to competitors. This study investigates a novel approach to this challenge. By leveraging the power of multi-linear regression, a statistical technique, researchers aim to predict a customer's annual data consumption with surprising accuracy. Imagine a world where customer data plans are not one-size-fits-all, but tailored to individual needs based on factors like demographics, service plans, and even customer satisfaction with service. This research explores the feasibility of such a future, potentially revolutionizing the way telecommunications companies manage customer data and satisfaction.

PURPOSE

This study aims to develop a method for predicting a customer's annual data consumption in the telecommunications industry. By leveraging multi-linear regression, a statistical technique, the research seeks to identify factors influencing data usage. These factors could include demographics, service plan details, and even customer satisfaction surveys. The ultimate goal is to create a model that predicts data usage with reasonable accuracy. This would allow telecommunications companies to develop targeted data plans that meet individual customer needs, potentially reducing customer churn and increasing overall satisfaction.

LIMITATIONS

Despite its potential benefits, this study has limitations to consider. Multi-linear regression assumes a linear relationship between variables. While data usage may correlate with factors like demographics and service plans, the relationship might not always be perfectly linear. Additionally, the accuracy of the model heavily relies on the quality of the data used. If the data is incomplete or inaccurate, the resulting model's predictions will be unreliable. Finally, this study focuses on historical data, and customer behavior can change over time. The model may require periodic updates to maintain its effectiveness as customer needs and data usage patterns evolve.

METHODOLOGY

The methodology employed in this study involves utilizing a dataset containing information on 1,000 customers. This data includes details such as demographics (age, income, number of children), service plan specifics (internet type, phone service), and even customer feedback on service aspects. The target variable for prediction is the annual data consumption measured in gigabytes (GB) per year. Categorical variables, like "Yes" or "No" service options, will be encoded as numerical values (e.g., 1 or 0) for analysis. Prior to applying the multi-linear regression model, the data will undergo cleaning procedures. This includes checking for missing values and outliers, and transforming categorical variables into numerical representations. By analyzing these factors and their relationship to data usage through multi-linear regression, the study aims to develop a model that can predict data consumption for new customers.

Why Multi-Linear Regression is Suitable for this Analysis

This study utilizes multi-linear regression, a statistical technique, to predict a customer's annual data consumption in the telecommunications industry. Here's a breakdown of why this method is a good fit for this particular analysis:

- Linear Relationships: Multi-linear regression thrives on linear relationships between variables. In our case, the target variable is annual data consumption (in gigabytes), and we suspect factors like demographics, service plan details, and customer satisfaction might influence this value. While the relationship may not be perfectly linear (e.g., a customer with a large family might not necessarily use double the data of a single person), multi-linear regression can still capture the general trend and quantify the strength of these associations. Scatterplots will be a valuable tool during data exploration to visually assess if these relationships appear linear.
- Multiple Explanatory Variables: Unlike simpler linear regression which deals with only one independent variable, multi-linear regression is well-suited for scenarios with multiple factors potentially affecting the outcome. Here, we're not just looking at a single variable like age to predict data usage. Factors like income, number of children, internet service type (DSL, fiber optic), and even ratings for customer service aspects might all play a role. Multi-linear regression allows us to analyze the combined effect of these variables on data consumption.
- Understanding Variable Importance: Through multi-linear regression, we can not only determine if a variable has a statistically significant impact on data consumption, but also assess the strength and direction of that influence. For instance, the model might reveal that income has a positive correlation with data usage, meaning customers with higher income tend to use more data. Similarly, a negative correlation might be found between customer satisfaction and data usage, suggesting happier customers might use less data on average. This information is crucial for telecommunication companies to understand which factors truly drive data consumption.
- Data Cleaning Considerations: It's important to acknowledge that multi-linear regression makes certain assumptions about the data. One key assumption is that the residuals, the difference between predicted and actual data consumption values, are normally distributed. Additionally, the independent variables should not be highly correlated with each other (multicollinearity). These assumptions will be carefully examined during data cleaning and pre-processing steps. Techniques like outlier removal and data transformation might be necessary to ensure the data adheres to the assumptions of the model.

In conclusion, multi-linear regression provides a solid foundation for this study due to its ability to handle multiple explanatory variables, quantify the strength of linear relationships, and identify which factors have the most significant influence on a customer's annual data consumption. By acknowledging the underlying assumptions and limitations of the model, this technique can be a valuable tool for telecommunications companies seeking to predict customer data usage and develop more targeted data plans.

Why Python is the Perfect Tool for This Analysis

This study leverages the power of Python for its extensive data science and machine learning capabilities. Python's user-friendly nature and versatility make it a perfect choice for this analysis. Here's a breakdown of the key advantages Python offers:

- Straightforward Language: Compared to other data science languages like R or MATLAB, Python boasts a clear and adaptable syntax. This ease of use makes it a favorite among researchers, allowing them to focus on the analysis itself rather than struggling with complex code structures.
- Speed and Efficiency: Python is renowned for its speed and efficiency in data processing. This is crucial for handling large datasets, as calculations are completed quickly, allowing researchers to iterate and refine their analysis promptly.
- Powerful Libraries: Beyond the core Python language, a wealth of libraries specifically designed for data science tasks are readily available. These libraries provide powerful tools to streamline the analysis process.

- Pandas for Data Manipulation: Pandas is a go-to library for data wrangling. It allows researchers to load datasets, clean and organize data, and efficiently create new variables from existing ones.
- Matplotlib for Visualization: Matplotlib offers a comprehensive set of tools to create informative charts and graphs that effectively communicate the findings of the analysis.
- Scikit-learn for Machine Learning: Scikit-learn plays a central role in building and implementing the multi-linear regression model, the heart of this study.
- Seaborn for Enhanced Visualizations: Seaborn provides a user-friendly interface on top of Matplotlib. This allows researchers to create aesthetically pleasing and informative data visualizations that enhance the clarity and impact of the analysis.

In conclusion, Python's user-friendly syntax, speed, and powerful data science libraries make it the ideal platform for this analysis of customer data consumption in the telecommunications industry. By leveraging these tools, researchers can effectively explore the data, build the multi-linear regression model, and ultimately gain valuable insights into customer data usage patterns.

Unveiling The Data

This section delves into the data strategy for this study. The information will be collected using Python's Pandas library, which excels at data manipulation. The data will be loaded into a Pandas dataframe named "churn_df" for easier manipulation and exploration. Data quality is paramount, so the initial steps involve examining the data structure and identifying any inconsistencies like misspellings or strange variable names. Missing data points will be scrutinized. Techniques like calculating central tendency measures (mean, median, or mode) might be used to impute missing values where appropriate. Alternatively, outliers, which are data points that fall far outside the expected range, might need removal, especially if they are several standard deviations above the mean. The target variable of interest is "Bandwidth GB Year," representing the annual data consumption per customer. This variable plays a crucial role in the decision-making process, as the goal is to predict data usage for future customers. Beyond the target variable, the dataset contains a wealth of potential explanatory variables. These include categorical variables like whether a customer churned (stopped using the service) or has a phone line, as well as ordinal variables derived from customer surveys on various service aspects (e.g., courteous exchange, timely response). By analyzing these variables and their relationship to data consumption, the study aims to develop a model that can predict a customer's annual data usage.

What Our Numbers Reveal

This section summarizes the key characteristics of the dataset used in this study. The data consists of 1,000 records with 50 original columns. However, certain identifying information (customer ID, address details) and seemingly irrelevant categorical variables (marital status) were excluded from the analysis. Additionally, binary variables like "Yes" or "No" options were converted into numerical values (1 or 0) for easier processing. This cleaning process resulted in a final set of 34 numerical variables, including the target variable (annual data consumption). One positive aspect of the data is the absence of missing values. This indicates that the data has been well-maintained and minimizes the need for imputation techniques. Initial examinations using histograms and boxplots suggest that variables like "Outage per week," "Email," and "Monthly Charge" follow normal distributions. Furthermore, the data cleaning process appears to have addressed outliers, as none were identified in the final dataset. Interestingly, a scatterplot revealed a bimodal distribution for both "Bandwidth_GB_Year" (annual data consumption) and "Tenure" (customer time with the company). While a perfectly linear relationship might not exist, this suggests a potential trend that can be further explored through multi-linear regression. Looking at some basic customer characteristics, the average customer in this dataset is 53 years old with two children and an annual income of approximately \$39,806. They experience minimal service disruptions (around 10 outage seconds per week) and contact technical support infrequently. The average customer has been with the company for 34.5 months, pays a monthly charge of \$173, and consumes 3,392 GB of data annually. These initial insights provide a starting point for understanding the customer base and will be further explored in the analysis.

From Raw to Ready for Analysis

This section outlines the data preparation procedures undertaken to transform the raw data into a format suitable for analysis. The first step involves creating a Python dataframe, a powerful data structure within Python for manipulating and organizing data. Next comes the crucial task of data cleaning. Unnecessary identifying information like customer IDs and zip codes are removed to protect privacy and maintain anonymity. Missing data points, if any, will be addressed strategically. Techniques like calculating central tendency measures (mean, median, or mode) might be used to impute missing values where appropriate. Alternatively, outliers, data points that fall far outside the expected range, might be removed, especially if they are several standard deviations above the mean. Categorical variables, like "Yes" or "No" options for service features, are encoded as numerical values (1 or 0) to facilitate analysis by the multi-linear regression model. Data exploration plays a vital role in this process. Univariate and bivariate visualizations, such as histograms and scatterplots, will be created to understand the

distribution of individual variables and potential relationships between them. Finally, the target variable, "Bandwidth GB Year" (annual data consumption), is incorporated into the dataframe. Once all these cleaning and transformation steps are complete, the prepared dataset will be exported as a CSV file named "churn_prepared.csv" for further analysis. This cleaned and structured data provides a solid foundation for building the multi-linear regression model.

DATA PREPARATION PROCEDURES 1. Include standard imports all the required references:

Increase Jupyter display cell-width
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:75% !important; }</style>"))

<IPython.core.display.HTML object>

Standard data science imports import numpy as np import pandas as pd from pandas import Series, DataFrame # Visualization libraries import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # Statistics packages import pylab from pylab import rcParams import statsmodels.api as sm import statistics from scipy import stats # Scikit-learn import sklearn from sklearn import preprocessing from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import classification_report # Import chisquare from SciPy.stats from scipy.stats import chisquare

from scipy.stats import chi2_contingency
Ignore Warning Code
import warnings
warnings.filterwarnings('ignore')

2. Change font and color of the Matplotlib:

```
In [3]: # Change color of Matplotlib font
import matplotlib as mpl
COLOR = 'white'
mpl.rcParams['text.color'] = COLOR
mpl.rcParams['axes.labelcolor'] = COLOR
mpl.rcParams['xtick.color'] = COLOR
mpl.rcParams['ytick.color'] = COLOR
```

3.Using pandas read the data from clean data file and change the names of the last eight survey columns to better describe the variables:

```
# Load data set into Pandas dataframe
churn_df = pd.read_csv("C:/Rekha/churn_clean.csv")
# Rename Last 8 survey columns for better description of variables
churn_df.rename(columns = {'Item1':'Timely_Response',
'Item2':'Timely_Fixes',
'Item3':'Timely_Replacements',
'Item3':'Timely_Replacements',
'Item4':'Reliability',
'Item5':'Options',
'Item6':'Respectful_Response',
'Item7':'Courteous_exchange',
'Item7':'Courteous_exchange',
'Item8':'Active_Listening'},
inplace=True)
```

4. Churn data frame with values:

#	Display	Churn	dataframe	
c	hurn_df			

	Lawline	Contempt, M	interaction	100	54/6	County	30	i.et	1.48	Deputation	-	MonthlyCharge	Service, 64, Nor	Seuty_Angennan
		NORTH	ARCIO- EIC-428 BOB- DHATETS	rat Bea	AK	Pites of Ville R/DF	-	16.2110	-131,2929			111 445762	MAX28710	1
1	- 9	873048	670630 6776630 67796330	UM Eyes	м	Openan	-	H 1990	44,2408	1148		263673	80.8276	
,	1	KOTER	1004 Van 1730-daeb 1070- 100- 10	'ante	ж	-	e-a	4.3008	-01,2467	178		10.442.00	2014/10/001	
3	1	Dealers	anchsh Josh-Jose Kilor Mikit-Twitt	Delife	GA	San Despe	1014	1.000	17.2678	1880		105.54640	2184159412	
		KINGTON	Matters Milliant Attraction	laste	TK.	Fast Barri	7.41	26.0012		100		10100	27.4548	4
	wet	1004103	elastar an-era Ma-	1041 145	vŦ	Rature 1	578	414130	223994	-		104.0000	10× 25000	-
	-	0001102	5480325 328-480- 838-	DAILY M		weighter	2741	10.3007	0.000	17.88		28.0040	100.01000	
	-	11040	431'10 N/1-0 1.55 PO(00004	Mandh	ex	there	1999	1111		-		10.2000	410.0000	
***	***	867017	275a5 100-010 100-010 104 1040	Crister	54	Centr	met.		en.1340	300%		712 428018	8466.427003	
		1981	Maribia Militation Militation Militation Militation	Catherine	- 54	Harrison	3863	11.11.10	0.184	522.0		2537989	107.1003	- 1

5. To List the data frame columns:

I mark + E1 column

6. To List the records & columns of dataset:

Find number of records and columns of dataset
churn_df.shape

(10000, 51)

7. List the churn data set statics:

Describe Chure dat chure df.describe()

	CaseOrdier	Ze	14	1.14	Population	Children	Apr	Income	Outage_sec_perweek	Enal	-	annershi saida	Bandwidth_GB_Tear	Tanet
count	13058-80206	10000.000000	10000-000000	10000.000000	10000.000000	10000.000000	10000.090006	10000 000000	18095 303009	10000 500000	-	10000.000000	19630-202003	
-	#999 50000	49153.319960	38.757567	40 762538	9756 562400	1 622546	53,297506	36258 017867	11 452955	12 815000		174 076305	3397 106397	
- 186	2008.00588	27532 196108	5.437389	15.156142	14432-000871	1.825971	18.003457	24747372781	7.025821	3.525854		41.335473	2072.718575	
min	5 30000	601.000000	17.066120	-171.600150	0.000000	0.000000	18.000000	740 500000	-1.340671	1.000000		77 505230	155.506715	
25%	2499 71000	26252 500000	38.341626	47.062812	738.000000	1.000000	41.000000	23666 796560	8 84 962	10.000000		141.071078	1312 130487	
50%	4999 50000	48085 500000	20 295300	47.519800	2910 500000	1.000000	53 000000	10106 795000	18 202898	12 000000		188 915400	3082 424000	
75%	7409.25000	71886.500000	42.100.000	40.038745	13186.000000	3.000000	55.000000	45504 182500	12 407544	14.000000		203.777441	5465 284000	
							and designed			21 000000		And advantation		
Descri	 23 column 	dataset sta	19 640060	-65.657850	111656 000000	18 000000	88.090000	258800 700000	47 548295	21 00000		315 870630	7158.962000	
Brows Describurn_di	* 23 column Lbe Churn	s dataset sta		-es es rese	Population	Children	Age		AT Sel200	Email			Bandwidth_GB_Year	Time
Erora Descri hurn_df	* 23 ookumm ibe Churn f.describe	a dataset sta ()	tistics								844			
Describurn_df	* 23 ookume Sbe Chunn f.describe CaseOrder 10000.00000	adataset star () Zip	tistics Lat	Lng	Population	Children	Age	Income	Outage_sec_perweek	Email	-	MonthlyCharge	Bandwidth_GB_Year)
Erona - Descrit hurn_di count 1 mean	* 23 ookume 100 Churn f.describe CaseOrder 10000.00000 4999.50000	8 dataset star () Zip 10000.000000	Lat 10000.000000	Lng 10000.000000	Population 10000.000000	Children 10000.000000	Age 10000.000000	Income 10000.000000	Outage_sec_perweek 10000.000000	Email 10000.000000	-	MonthlyCharge 10000.000000	Bandwidth_GB_Year 10000.000000	7
Erona - Descrit hurn_di count 1 mean	* 23 ookume 100 Churn f.describe CaseOrder 10000.00000 4999.50000	8 dataset star () Zip 10000.000000 49153.319600	Lat 10000.000000 38.757567	Lng 10000.000000 -90.782536	Population 10000 000000 9756 562400	Children 10000.000000 1.822500	Age 10000.000000 53.207500	Income 10000.000000 38256.017897	Outage_sec_perweek 10000.000000 11.452955	Email 10000.000000 12.016000	-	MonthlyCharge 10000.000000 174.076305	Bandwidth_GB_Year 10000.000000 3397 196397) 7 5
Count 1 mean std	* 23 ookume ibe Churn f.describe CaseOrder 10000.00000 4999.50000 2888.89588 0.00000	8 dataset star () Zip 10000.000000 49153.319600 27532.196108	Lat 10000.000000 38.757567 5.437389	Lng 10000.000000 -90.782536 15.158142	Population 10000 000000 9756 562400 14432 858671	Children 10000.000000 1.822500 1.925971	Age 10000.000000 53.207500 18.003457	Income 10000.000000 38256.017897 24747.872761	Outage_sec_perweek 10000.000000 11.452955 7.025921	Email 10000.00000 12.016000 3.025898	-	MonthlyCharge 10000.00000 174.076305 43.335473	Bandwidth_GB_Year 10000.00000 3397 166397 2072.718575	0 7 5 5
Entres of Descrit hurn_df count 1 mean std min 25%	+ 23 column (be Churn f.describe CaseOrder 10000.00000 4999.50000 2855.89588 0.00000 2459.75000	s dataset star () 10000.000000 49153.319600 27532.196108 601.000000	Lat 10000.000000 38.757567 5.437389 17.966120	Lng 10002.00000 -90.782536 15.158142 -171.688150	Population 10000.000000 9756.562400 14432.898671 0.000000	Children 10000.000000 1.822500 1.925971 0.000000	Age 10000.000000 53.207500 18.003457 18.000000	Income 10000.00000 38256.017897 24747.872781 740.660000	Outage_sec_perweek 10000.00000 11.452955 7.025921 -1.348571	Email 10000.00000 12.016000 3.025896 1.000000		MonthlyCharge 10000.00000 174.076305 43.335473 77.505230	Bandwidth_GB_Year 10000.00000 3397 166397 2072.718575 1955.506715	0 7 5 7
Count 1 mean std 50%	* 23 oolume (be Churn f.describe CaseOrder 19000.0000 4999 50000 2499 75000 4999 50000	a dataset star () 200 2000,000000 40153,319600 207532,196108 601,000000 20532,500000	Lat 10000.000000 38.757567 5.437389 17.966120 35.341828	Lng 10009.000000 -90.782536 15.158142 -171.688150 -97.082812	Population 10000.000000 9756.562400 14432.698871 0.00000 738.00000	Children 10000.000000 1.822500 1.925971 0.000000 1.000000	Age 10000.000000 53.207500 18.003457 18.000000 41.000000	Income 10000.00000 38256.017897 24747.872781 740.560000 23660.790000	Outage_sec_perweek 10000.00000 11 452955 7 025921 -1.340571 8 054362	Email 10000.00000 12.016000 3.025898 1.00000 18.00000		MonthlyCharge 10000.00000 174.076305 43.335473 77.505230 141.071078	Bandwidth_GB_Year 10000.00000 3397 19639 2072.71857 1955.50671 1312 130483	0 7 5 7 7

8. Removing variables from statistics description:

<pre>/ here test manipus despends versions free institutes according here, # - share, #.deg(colors-) "content", "Contenting", "Detraction", "Duty", "Duty", "Conty", "Dy", "Lot", "Cop", "Replation", "Aver", "Cot", "</pre>	Harital", Pape	
 turn_0f.de(crlbe()		

	Châdran	Apr.	Rubers	Outage_ant_personsk	Seal	Cardwite	Testy, epip, failure	Imain	BudlyCharps	Bardwill,GA,Yest	Tenaly, Responses	Track, Fan
1044	10808-080880	13000 200008	13030 000000	TROPC BORDIER	10808-000000	10000-000010	12000 810000	10080.008080	10008-080800	10000.000000	10080.00000	10808-18000
-	1.822500	\$5,207508	34258.011907	11.452918	12 016000	1 30-010	8.369999	34.558084	174-075305	3087.456387	3.408030	3.59510
	1.625871	18.85457	34742-872791	7 \$25621	1425494	8 963416	0.035953	24 10212	43.38473	2072.718575	1.812787	1,03464
-	8.080803	15.2020.08	748 060808	-1.348571	1.000000	8 80000	0.00000	1.006209	17.585238	195,508718	1.008000	1.08000
20	1.00000	41.00008	ZORNE TWOBIE	1.04042	18.000000	1.0000	1.0000	8,706529	341071878	1312.13848?	10000	1.0000
30%	1.000000	\$1,000004	32108 795909	10.202634	12.000000	1 200408	0.000000	38 196030	198/210400	3382 424680	1908080	4.08000
79%	3 000 000	(5. NUMBER	40104 102008	12.47/144	14.000000	2 100000	130300	80.155487	203 777441	5485-204580	4308080	4,0000
-	18.060603	An extented	plakie 7x0e/a	47 Avhilton	23 000000	7.00000	6.000006	71.696280	315.079600	2156.862080	7 (00000)	7.08000

Dataset with missing data points: 9.

<pre># Discover missing dat data_nulls = churn_df.</pre>	
print(data_nulls)	
Timezone	0
Children	0
Age	0
Education	0
Employment	9
Income	0
Gender	0
Churn	0
Outage_sec_perweek	0
Email	0
Contacts	0
Yearly_equip_failure	0
Techie	2477
Contract	0
Port_modem	0
Tablet	0
InternetService	0
Phone	1026
Multiple	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	991
StreamingTV	0
StreamingMovies	0
PaperlessBilling	0
Tenure	0
MonthlyCharge	0
Bandwidth_GB_Year	0
Timely_Responses	0
Timely_Fixes	0
Timely_Replacements	0
Reliability	0
Options	0
Respectful_Response	0
courteous_exchange	0
Active_Listening	0
dtype: int64	

10. Data Preparation with dummy variables:

eparation with dummy variables: churn_df['DummyChurn'] = [1 if v == 'Yes' else 0 for v in churn_df['Gender']] churn_df['DummyChurn'] = [1 if v == 'Yes' else 0 for v in churn_df['Churn']] churn_df['DummyContract'] = [1 if v == 'Yes' else 0 for v in churn_df['Tente']] churn_df['DummyOrt_modem'] = [1 if v == 'Yes' else 0 for v in churn_df['Port_moden']] churn_df['DummyTenteretService'] = [1 if v == 'Yes' else 0 for v in churn_df['Tentet']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['TentetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['InternetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['InternetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['InternetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['InternetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['InternetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['InternetService']] churn_df['DummyTenetService'] = [1 if v == 'Yes' else 0 for v in churn_df['DumiTenetService']] churn_df['DummyDeviceProtection'] = [1 if v == 'Yes' else 0 for v in churn_df['DeviceProtection']] churn_df['DummyStreamingTv'] = [1 if v == 'Yes' else 0 for v in churn_df['TectSopport']] churn_df['DummyStreamingTv'] = [1 if v == 'Yes' else 0 for v in churn_df['StreamingTviss']] churn_df['DummyPerless8illing'] = [1 if v == 'Yes' else 0 for v in churn_df['Perless8illing']] churn_df['DummyPerless8illing'] = [1 if v == 'Yes' else 0 for v in churn_df['StreamingTviss']] churn_df['DummyPerless8illing'] = [1 if v == 'Yes' else 0 for v in churn_df['StreamingTviss']] churn_df['DummyPerless8illing'] = [1 if v == 'Yes' else 0 for v in churn_df['StreamingTviss']] churn_df['DummyPerless8illing'] = [1 if v == 'Yes' else 0 for v in churn_df['Streami

11. Eliminating categorical features from data frame:

	Origan	444		Outage are personal	Lead	Contactor Name		here	Berthy Carne	Dandwidth GD Team		Down/inter-
DOM:		13006-080808	10060 208086	18080 500808		10001-00008		13626-580800	10008-060080	13008 080360	VERSE STRONG	190
-	1.822500	\$3.247508	36255.817687	11 452915	12.01500	0.004208	4.346300	34 Million	174.076385	2007 100007	0.208108	
-	1829811	18.053457	24747 872791	7 829621	3 825698	0.000458	8.070915	25.162612	43.339.475	2872 118676	0.457887	
nin.	8.000000	18 300000	740 (0000)	-1348571	1.000000	0.000000	8.000000	1.000259	17.585230	155.546715	0.000000	
29%	1.000803	41 000000	21680.798086	1.864362	10.00000	0.000000	1.00000	4 790529	141-071070	1312130487		
58%	1.000003	13 000000	33186.705080	10.20204	12 80809	1 800008	8.000000	36 196830	102210403	1082 424080	0.000006	
29%	3.000003		41124 152185	12.407644	14.00000	2 808008	1.000000	68.163.487	203.777441	1414.254140		
net	18.00000	NE COORDE	250340 704086	47 940258	23 1010030	7 (600008)	8.000000	71 385296	315.079688	7158.542360	130608	
then a	33 columns											
				thlyCharge								
		Respec DumnyG DumnyP DumnyP DumnyD DumnyD	tful_Re: ender', ort_mode ultiple evicePro	, 'Timely_F sponse', 'c 'DummyChur em', 'DummyOr ', 'DummyOr stection', sBilling'],	Tablet Dummy	ments', 'F us_exchang ummyTechie ', 'Dummy) curity',	Reliabil ge', 'Ac a', 'Dum Internet 'DummyOn	ity', ' tive_Li myContr Service lineBac	Options stening act', ', 'Dum kup',	myPhone',		

CONCLUSION

This study successfully employed multi-linear regression to explore the factors influencing customer data consumption in the telecommunications industry. By leveraging Python's data science capabilities and a well-structured dataset, the analysis yielded valuable insights.

The key findings of the data analysis are as follows:

- **Multi-linear Regression Model:** The analysis identified a multi-linear regression model with four key independent variables: Children, Tenure (customer time with the company), Timely Fixes, and Timely Replacements (both service satisfaction measures). The equation for this model is:
- y = (497.78 + 31.18 * Children + 81.94 * Timely_Fixes 3.66 * Tenure + 1.07 * Timely_Replacements)
 Variable Influence: The coefficients associated with each variable in the model indicate their influence on data consumption. The number of children in a household has the strongest positive influence (31.18)
- units), followed by timely fixes to service issues (81.94 units). Conversely, longer customer tenure has a slightly negative impact (-3.66 units), and timely replacements show a minimal positive influence (1.07 units).
- Statistical Significance: It's important to note that the p-values for Children and Tenure are statistically significant at 0.000, indicating a strong correlation with data consumption. However, the p-values for Timely Replacements (0.73) and Timely Fixes (0.25) are not statistically significant, suggesting a weaker or potentially non-existent relationship with data usage in this particular dataset.
- Limitations and Future Research: While this study provides valuable insights, it acknowledges limitations. The data collection used was relatively small. Including more data points from additional years could strengthen the model and enhance its generalizability. Additionally, the study highlights the distinction between correlation and causation. While the model suggests a relationship between factors like tenure and data usage, it cannot definitively determine cause and effect. Further research is needed to explore these relationships in more depth.

In conclusion, this study demonstrates the potential of multi-linear regression to understand customer data consumption patterns. The findings provide a foundation for telecommunications companies to develop data plans that better cater to individual customer needs, potentially reducing churn and increasing overall customer satisfaction. Future research with larger datasets and a focus on causal relationships can further refine these insights and provide even more actionable guidance for the telecommunications industry.

REFERENCES

- [1]. Massaron, L. & Boschetti, A. (2016). Regression Analysis with Python. Packt Publishing.
- [2]. CBTNuggets. (2018, September 20). Why Data Scientists Love Python.