
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(12):109-114

Research Article ISSN: 2394 - 658X

109

Kubernetes Resource Planning to improve Application Performance

and Stability

Pallavi Priya Patharlagadda

Pallavipriya527.p@gmail.com

United States of America

ABSTRACT

Deploying containerized applications on Kubernetes does not absolve us from resource management. Though we

can scale our application much more simply as demand grows, our way of thinking may have altered because we

now frequently have to take into account the possibility of resource conflicts between our containers. In a

Kubernetes cluster, the "noisy neighbor" issue can be resolved with the usage of resource requests and limits. In

this paper, we deep dive into the details and the importance of setting up resource limits on the Kubernetes

cluster.

Keywords: Kubernetes, resource management, noisy neighbor

__

INTRODUCTION

It is indisputable that Kubernetes offers performance gains. Let's only focus on the efficacy that Kubernetes offers,

which comes with inexpensive infrastructure expenses because of its capacity to tightly schedule containers onto the

underlying machines. With the tools available to separate apps from one another, avoiding the possibility that a

runaway container might affect the operation of a crucial service. It's not unexpected, given the higher adoption

rate, that Kubernetes expenses are rising, as indicated by the Kubernetes FinOps Report (June 2021) survey;

however, one would wonder if this also partially reflects the acknowledged difficulties in making Kubernetes

energy-efficient. Yet not all in Kubernetes Land is rosy. To be honest, even the most seasoned performance

Engineers and SREs find it challenging to maintain application speed, stability, and efficiency on Kubernetes. Many

stories about teams facing Kubernetes application performance and stability problems—like unanticipated CPU

slowdowns and even abrupt container terminations—can be found on the Kubernetes Failure Stories website, which

was established to facilitate the sharing of Kubernetes incident reports and teach best practices.

In the sections that follow, we will describe Kubernetes and the major reasons on how Kubernetes manages

resources, which necessitates careful application configuration to ensure cost effectiveness and performance

improvement.

WHAT IS KUBERNETES?

Patharlagadda PP Euro. J. Adv. Engg. Tech., 2021, 8(12):109-114

110

As defined on the kubernetes.io website, “Kubernetes is a portable, extensible, open-source platform for managing

containerized workloads and services that facilitates both declarative configuration and automation. It has a large,

rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.”. The term Kubernetes

comes from Greek and means helmsman or pilot. K8s is an abbreviation that comes from counting the eight letters

between the "K" and the "s". In 2014, Kubernetes was made available to the public by Google. Kubernetes blends

Google's 15-year experience running production workloads at scale with community-generated best-of-breed ideas

and practices. The below image gives us an understanding of how the application deployment evolved over time.

THE NEED OF KUBERNETES AND ITS CAPABILITIES

Bundling and running your apps in containers is a smart idea. In a production setting, you are responsible for

maintaining uptime and managing the containers that execute the apps. For instance, another container needs to start

in case the first one fails. If a system oversaw this conduct, wouldn't it make things easier?

That's where Kubernetes comes into play! You may operate distributed systems with resilience by using the

framework that Kubernetes offers. It offers deployment patterns, handles scaling and failover for your application,

and much more. For instance: Kubernetes can effortlessly oversee a system's canary deployment.

KUBERNETES OFFERINGS

Kubernetes offers a wide range of services. Below are some of the widely used offerings

● Service discovery and load balancing: Kubernetes can expose a container using its DNS name or its own IP

address. To ensure a stable deployment, Kubernetes may load balance and distribute network traffic to a container

in cases of significant traffic.

● Storage orchestration: With Kubernetes, you can set up any storage system to be mounted automatically,

including local drives, public cloud storage, and more.

Patharlagadda PP Euro. J. Adv. Engg. Tech., 2021, 8(12):109-114

111

● Automated rollouts and rollbacks: With Kubernetes, you can define the ideal state for your deployed

containers, and it will gradually transform the current state to the desired state. To build new containers for your

deployment, for instance, you can automate Kubernetes to delete old containers and transfer all of their resources to

the new container.

● Automatic bin packing: For the purpose of executing containerized jobs, you give Kubernetes a cluster of nodes.

You specifyinspecify in Bytes are the units of measurement for memory. However, memory can be expressed using

a variety of suffixes (E, P, T, G, M, K, and Ei, Pi, Ti, Gi, Mi, Ki) ranging from mebibytes (Mi) to petabytes. Most

people simply utilize Mi Pods, like CPUs, will never be scheduled if their resource requirements exceed a node's

capacity. Memory, unlike CPUs, is not compressible. Memory cannot be slowed or accelerated in the same way that

CPUs or networks can. If a pod hits its memory limit, it will be terminated. The picture below depicts the same. The

yml file specifies the memory requests of “2Gi” and 1 CPU. If the pod is deployed on a node with 2 CPUs and 8GB

of RAM, then the backend pod would take half of the CPU and 25% of RAM.

Now, let’s look at an example with multiple containers.

Since Kubernetes has no defaults, we need to define the resources in YAML format. A configuration may look like

this:

apiVersion: v1

kind: Pod

metadata:

 name: Backend

spec:

 containers:

 - name: db

 image: mysql

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 limits:

 memory: "512Mi"

 cpu: "1000m"

 name: simpleApp

 image: sampleImg

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 limits:

 memory: "256Mi"

 cpu: "500m"

Using a MySQL database and the sample image, this is an example of a sample application. Provisioned with 64 Mi

(megabyte) of RAM AND 250 millicores (one-fourth of a core) of CPU power are the two sampleApp and database

containers. The request block contains definitions for these parameters.

Regarding limitations, the sampleApp image has a 500m CPU limit and memory set to 256Mi. The database has a

full core with a 1000m setting and doubles the limit at 512Mi. As database applications often use more resources,

we can test using a larger estimate.

You can raise the restrictions to 1 GB of memory and 2 CPU cores if you believe the database needs additional

resources.

We can determine whether to raise or decrease the resources based on testing. Adjust the settings based on your

needs. Certain workloads, like Node.JS and React, will use a lot less resources than legacy Java monolith apps,

which could need a lot more RAM.

Here are a few key points to keep in mind: The request cannot be less than the limit at any point. If you try to do

this, Kubernetes will error out. Kubernetes will never schedule a container whose request exceeds the capacity of a

node. Your program won't ever be deployed, for instance, if it is designed to employ 3.5 cores on a 2-core node.

Namespaces for Kubernetes:

In addition to the resources of each individual container, you might want to look at limiting namespaces. But first,

what is a namespace? A cluster of apps, departments, or environments can be defined using namespaces. A

Kubernetes cluster's Namespace is essentially the scope or grouping of its items. A development namespace can be

defined, and it has tougher limitations than a production namespace. Consequently, this exemplifies the use of

Patharlagadda PP Euro. J. Adv. Engg. Tech., 2021, 8(12):109-114

112

namespaces to denote deployment environments. A few organizations divide up teams or groups into various

namespaces. In an ideal world, smaller deployments could function flawlessly with the aforementioned container

resource settings, but in larger, multi-silo businesses with various teams, certain apps might use more cluster

resources than they should. You can use any namespace that you want it to be.

You can configure Limit Ranges and Resource Quotas at the Namespace level.

RESOURCES QUOTAS

Limit Ranges apply to specific pods inside a resource, whereas Resource Quotas are the maximum limits for all

pods within a namespace. Resource Quotas is the tool for managing resource quotas, as the name implies. It gives

administrators the option to specify and enforce the total number of resources within a namespace.

Here is an illustration of a resource quote. There is a 3Gi memory restriction for this namespace.

apiVersion: v1

kind: ResourceQuota

metadata:

 name: app

spec:

 hard:

 cpu: "10"

 memory: 3Gi

 pods: "5"

 replicationcontrollers: "10"

 resourcequotas: "1"

 services: "2"

Limit Ranges:

Limit Ranges impact specific pods and containers as opposed to Resource Quotas, which span the entire

namespace.

A sample configuration can be found below. Limit ranges will stop users from over-provisioning tiny or extremely

broad applications into a node inside a namespace.

limits:

 - default:

 memory: 1Gi

 defaultRequest:

 memory: 1Gi

 max:

 memory: 1Gi

 min:

 memory: 500Mi

 type: Container

There are 4 parts: default, default Request, max, and min.

SECTION APPLIES TO

Default Default Limits

Default Request Default Requests

Max Max Limits

Min Min Requests

If a pod doesn't have a resource definition, the namespace defaults will apply. A pod will inherit the provided values

if it does not specifically declare a particular resource. For instance, it will inherit the default limitations in the

absence of a default value.

 When you have settings that are contradictory or competitive, things get complicated. A few instances are:

If there is no default option or if the containers do not establish limitations explicitly, namespace max values take

precedence. It shall assume the minimum value in the absence of a default Request assignment. Additionally,

neither the pod's individual request settings nor the default Request setting may be lower than the minimum.

If you try to apply conflicting settings, Kubernetes will throw an exception. Simultaneously, Kubernetes is

intelligent enough to detect omissions and reassign values according to the previously stated guidelines.

Patharlagadda PP Euro. J. Adv. Engg. Tech., 2021, 8(12):109-114

113

Benefits of the Kubernetes Limit Range

The main purpose of limit ranges is to reduce the number of apps that might use more resources than they should.

The advantages extend beyond limiting the number of resources used by applications.

Multiple workloads, including development and production, can be supported by a cluster. While development may

only require 1 GB of RAM, a production workload may require 16 GB. Strict quotas are required by best practices

for lower-tier settings, such as staging and QA. It is best to lock down development environments.

A further benefit is homogeneity in terms of deployment. Suppose one program uses up 80% of the resources,

leaving too little for other applications to use. Thus, in order to offer consistent scheduling, administrators might

need a minimum of 25% of RAM and CPU.

COMMON CHALLENGES

Although resource allocation and restriction are possible (by object type, count, or namespaces), these

configurations may still result in overcommitments and slack, as K8s administrators refer to wasted spending.

For instance, the application would be Out Of Memory (OOM) and crash in the event that not enough memory

resources were allocated. Inadequate planning may result in a production application outage while provisioning a

new pod for testing.

The use of pod priority and preemption is one approach to solving this issue. Pod priority indicates a pod's

significance in relation to other pods. Preempting (evicting) a lower-priority pod is the scheduler's attempt to

schedule a higher-priority pod when it cannot.

apiVersion: v1

 kind: PriorityClass

 metadata:

 name: critical

 value: 9999999

 globalDefault: false

 description: "Use this class for critical service pods only."

By changing the preemption Policy to "Never," you can also prevent preemption of a high Priority Class.

apiVersion: v1

 kind: PriorityClass

 metadata:

 name: high-priority

 value: 7777777

 globalDefault: false

 preemptionPolicy: Never

 description: "Use this class for critical service pods only."

Pod priorities are associated with a pod using the priorityCassName field.

apiVersion: v1

 kind: Pod

 metadata:

 name: a-pod

 spec:

 containers:

 name: a1-container

image: nginx

 imagePullPolicy: IfNotPresent

 resources:

 limits:

 memory: “1Gi”

 cpu: “500Mi”

 name: a2-container

 image: nginx

 imagePullPolicy: IfNotPresent

 resources:

 limits:

 memory: “1Gi”

 cpu: “500Mi”

 priorityClassName: critical

You can schedule your most important tasks with confidence and not worry about over-provisioning your clusters

thanks to pod priority and preemption.

Patharlagadda PP Euro. J. Adv. Engg. Tech., 2021, 8(12):109-114

114

QOS CLASSES

When Kubernetes creates a pod, it assigns one of these three QoS classes:

• Guaranteed

These need stringent regulation. The limits and requests are the same for both CPU and RAM. To put it

simply, requests and limits have the same value. They operate until they surpass the limitations and are

regarded as high priorities.

• Burstable

These classes fall into two categories. They either fall short of the guaranteed QoS requirements or atleast

one memory or CPU request is present.

• BestEffort

This is a container that has no requests, memory limits, or CPU restrictions. If you haven't defined any

resources, your pod is operating in BestEffort by default.

QOS BEST PRACTICES

BestEffort is not recommended for workloads related to production. Remember that these are the containers that

will be killed first. For most general workloads, burstable works well. Applying a QoS assured class is advised for

sensitive applications that could experience spikes or anything that operates in a stateful set, such as databases.

CONCLUSION

Microservice-based applications work well on Kubernetes, but applications must be properly designed to guarantee

good performance and low costs. Resource scheduling is becoming more and more important as container clusters

get bigger and more complicated. Container limits can be used to monitor application resources. Namespace

settings allow distinct groups and classes to have different limitations when there are additional teams working on

different projects in a cluster. One namespace's resources are not visible to other namespaces. Additionally, these

namespaces can be used in various tier environments across the whole CI/CD pipeline, from workflows in staging

to production. In addition, mission-critical operations may need a higher degree of uptime for important

applications like databases. Those apps are given precedence through careful resource allocation and QoS classes.

As we've covered, even the most seasoned performance specialists find it difficult to tune these apps because of the

intricacy of Kubernetes' resource management. The intended application performance, stability, and cost-efficiency

cannot always be guaranteed by traditional methods that mostly rely on human tuning.

REFERENCES

[1]. https://www.akamas.io/resources/kubernetes-optimization-costs-slo/

[2]. https://kubernetes.io/docs/concepts/overview/

[3]. https://www.densify.com/kubernetes-tools/kubernetes-resource-limits/

[4]. https://goteleport.com/blog/kubernetes-resource-planning/

