
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(11):95-98

Research Article ISSN: 2394 - 658X

95

Latency Throughput Linear Analysis for GPU Architecture

Pipeline

Apoorva Reddy Proddutoori

San Diego

Email: apoorvaproddutoori@gmail.com

ABSTRACT

Recent focus has been on eliminating redundant network worload through content-based cracking and utilizing

low latency components, using a computationally heavy algorithm. A GPU-based implementation of this

algorithm is proposed in this paper, with optimization strategies to enhance performance and throughput of the

pipeline architecture. Despite ongoing research on GPU-to-GPU communication, achieving performance on

multi-GPU systems remains a challenge due to data workload transfer latency and memory access or allocation

issues. Additionally, GPU parallel computation with memory allocation optimization shows significant

improvements in fast Fourier transform calculation speed, with ratios better when compared to CPU speeds.

Key words: GPU, latency, throughput, pipeline architecture, memory allocation

__

INTRODUCTION

The elimination of redundant network traffic has recently attracted much attention from both academia and

industry. A key challenge and enabling technique in implementing redundancy elimination is content-based

cracking, which typically involves a computationally algorithm. In this paper, we propose a GPU-based

implementation of fingerprinting to solve this problem. Various optimization strategies are proposed to

maximize performance, such as efficient buffer management, GPU memory hierarchy optimization, and

balanced load distribution by exploiting hardware characteristics or solving domain-specific challenges.

Extensive evaluations of both overall and microscopic performance reveal the effectiveness of the GPU-

accelerated Rabin fingerprinting algorithm, and we can achieve up to % Gpbs of performance on a graphics

card. Performance shows a better speedup compared to the latest equivalent hardware. Although some

optimization schemes are problem specific, the techniques proposed in this paper, including the indexed

compact buffer model and approximate sorting, would be useful and applicable to other web applications using

GPU acceleration. Despite ongoing research on GPU-to-GPU communication mechanisms, achieving

performance on multi-GPU systems remains a major challenge. Inter-GPU data transfer via DMA-based bulk

transfers exposes data transfer latency on the GPU's critical execution path because these large transfers

logically overlap between computer cores. Conversely, fine-grained peer memory access during kernel

execution causes memory stalls that can exceed the ability of GPUs to cover these operations with multiple

threads due insufficient memory allocation leading to high workload traffic generation, thereby increasing the

latency, and worsening the throughput. Even worse, these underline moves are very inefficient with current

GPU interfaces. This study compares the performance of fast Fourier transforms on a host processor, GPU

parallel computing, and GPU parallel computing with memory allocation optimization.

Furthermore, GPU parallel computing has been shown to be effective in increasing FFT calculation speed, when

using 1-bit complex input data, the ratio of GPU parallel computation to CPU speed can reach. In addition,

optimizing GPU memory allocation, FFT calculation speed can be further improved.

mailto:apoorvaproddutoori@gmail.com

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(11):95-98

96

Figure 1: GPU Memory Controller Architecture

RELATED WORK

Common Reason Realistic Handling Units are presently a principal component in any high-performance

computing framework due to the tall capacity of these architectures to perform complex computations

productively. Over the final decade, NVIDIA has presented seven contrasting GPU generations/architectures.

Each engineering architecture pipeline possess its individual microarchitecture and equipment characteristics.

Be that as it may, the rate of undisclosed characteristics beyond what GPU merchants have archived is little.

Subsequently, inquiries about have proposed distinctive micro-benchmarks compose in programming dialects,

such as CUDA or OpenCL to get it the covered-up characteristics of the equipment for nearly each GPU

generations/architectures. In this paper, we demystify the idleness of distinctive instructions executing within

the pipeline and the distinctive memory chains of command found in different NVIDIA GPUs. Since CUDA

(nvcc) compiler optimization influence the informational, we moreover, appear the impact of the CUDA

compiler optimizations on the execution of all informational. In this study, we discuss the use of GPU pipeline

architecture in parallel computing to accelerate Fast Fourier Transform (FFT) calculations. In addition, memory

allocation methods are used to optimize calculations and achieve low latency.

Figure 2: Basics of GPU Pipeline Architecture

Regardless of the achievements in the GPU pipeline architecture and its programming, attaining high throughput

and high performance in multi-core GPU systems still holds a challenge for most of the developers. To

methodologically parallelize the pipeline architecture efficiently across all the cores of the GPU system,

developers potentially utilize the concept of data structures across the L1 cache and L2 cache of GPU memory.

Furthermore, the developed algorithm needs to synchronize between the duty cycle of the instructions provided

to the multi-core GPU and the data traffic allocation of the memory. In other words, the connection is idle

during the computing time and the computing device is idle during the communication time.

Moreover, the implementation of the linear equations with creative iterative and directive methods has been the

go-to resource for most of the developers in recent times. To improve and optimize the memory allocation for

benefiting the latency-throughput, the main objective focuses on reduction of the sparse matrix of the linear

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(11):95-98

97

equations, along with speeding up the computational times. With the development of parallel computers, general

purpose technical computers, computers can achieve higher computing speeds through parallel processing.

Therefore, the parallelization of spatial matrices for linear equations is of great interest. Some research efforts

have been devoted to converting existing algorithms to parallel computing.

INTRODUCTION TO ALGORITHM

A. Memory Allocation Optimizations

• Global Memory – Globally accessible memory, Global memory data can be potentially utilized for

multi-core, multi-threaded GPU Pipeline architecture system, but with maximum latency.

• RF Memory – The quickest accessible memory buffer, providing scope for usage of threads running in

parallel within the registers. This has lowest latency but not higher throughput due to delay caused

when all the registers are inaccessible for storage, then secondary memory storage needs to be added

into the pipeline architecture.

• Persistent Memory – Can be used for accessing data that doesn’t iterate during kernel execution.

• Common Shared Memory – Only threads with L2 cache can access memory from L2, meaning threads

within each of the blocks can individually access memory within the block or buffer. Further,

synchronization is required to avoid race around conditions.

In terms of latency, RF is much lower compared to that of any of the local and global memory.

Figure 3: Parallel FFT Algorithm

B. Parallelization of GPU Pipeline Architecture

The rise in the workload size raises the number of threads accessing the memory, either local or global leading

to high latency processing. Accessing the shared memory potentially minimizes the execution time of these

threads thereby lowering the latency and improving the synchronization. But the drawback of this methodology

is that shared memory has limited access, hence restructuring GPU pipeline architecture would highly help

manage the workload.

Prepare the data that the processor needs to perform the FFT operation. Put data into global memory. Split data

into several parts. Then select the appropriate number of threads in one block. Here we use only its first

dimension. Put data into shared memory. And do a butterfly operation on each block. At this point, there is no

bank conflict in shared memory and the previous level is executed. Put data in shared memory back into global

memory. This is the first exchange. Keep dividing the previous data into several parts. Then join the small

pieces. Select the number of threads in one block. This step ensures that the first dimension is 16. Because

addition is required. Do the butterfly operation column by column. Currently there is no bank conflict either. Put

the data into shared memory and perform a butterfly operation on each block. At this point, the later level is

filled. And the whole butterfly operation is done. At this point, the next level is started. And the whole butterfly

Proddutoori AR Euro. J. Adv. Engg. Tech., 2021, 8(11):95-98

98

operation is over. Put data in shared memory back into global memory. This is the last shift. Return the

calculation results in global memory to the CPU.

CONCLUSION

The GPU pipeline architecture performs better computations when the workload size is minimal, meeting the

requirements of its ability to be performed in single thread computation. As the workload traffic rises, more

number of threads are needed to be perform the computations, rising the level of synchronization in the GPU

pipeline architecture, improving the concurrency in return. Therefore, the optimization technique using the Fast

Fourier Transform, alleviates the workload access for low latency memory allocations. Furthermore, FFT

algorithms have been widely applied into the field of science vastly providing great benefits achieving low

latency pipeline architecture systems.

FUTURE SCOPE

The analysis of this paper can be extensively used to develop memory optimizations using 2D FFT and 3D FFT

algorithm, relatively improving the latency and throughput of the system design. Algorithms can also be

developed to minimize the workload data traffic congestion amongst the threads to maximize performance

gains. In addition, indexed buffer methodology and sorting approximation can be applied to multi-core multi-

threaded networks to leverage the GPU pipeline architecture computations.

REFERENCES

[1]. Yehia Arafa1, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan

Eidenbenz, “POSTER: GPUs Pipeline Latency Analysis”, IEEE 30th International Conference on

Application-Specific Systems, Architectures and Processors (ASAP), 2019

[2]. Fan Zhanga, Chen Hua, Qiang Yina, Wei Hua, “A GPU Based Memory Optimized Parallel Method for

FFT Implementation”, Semantic Scholar, July 2017

[3]. Chu-Hsing Lin, Jung-Chun Liu, Po-Kai Yang, “Performance Enhancement of GPU Parallel Computing

Using Memory Allocation Optimization”, IEEE, April 2020.

[4]. Harini Muthukrishnan, David Nellans, Daniel Lustig, Jeffrey A. Fessler, Thomas F. Wenisch,

“Efficient Multi-GPU Shared Memory via Automatic Optimization of Fine-Grained Transfers”,

ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), 2021

[5]. Jianhua Sun, Hao Chen, Ligang He, Huailiang Tan, “Redundant Network Traffic Elimination with

GPU Accelerated Rabin Fingerprinting”, IEEE Transactions on Parallel and Distributed Systems, Vol.

27, No. 7, July 2016

[6]. Dongxu Yan, Haijun Cao, Xiaoshe Dong, Bao Zhang, Xingjun Zhang, “Optimizing Algorithm of

Sparse Linear Systems On Gpu”, Sixth Annual ChinaGrid Conference, 2011

