
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(11):28-38

Research Article ISSN: 2394 - 658X

28

Deploying Python APIs on GCP GKE with HELM: A

Comprehensive Guide

Bhargav Bachina

ABSTRACT

Kubernetes has rapidly become a cornerstone technology in modern IT infrastructure, with widespread

adoption across various industries. However, deploying applications on Kubernetes entails managing numerous

objects such as deployments, configmaps, and secrets, each defined in manifest files. While this approach

works for initial deployments, it becomes cumbersome for repeated deployments. Enter Helm, the Kubernetes

package manager designed to simplify application deployment, enhance security, and provide configurability.

Helm streamlines the deployment process by enabling users to package and manage Kubernetes applications

efficiently. In this paper, we explore deploying Python APIs on Google Cloud Platform's Google Kubernetes

Engine (GKE) using Helm, covering essential prerequisites, Dockerization, container image pushing, Helm

chart creation, GKE cluster configuration, Helm chart installation, accessing the deployed API, cluster cleanup,

and concluding insights. Through this exploration, we aim to provide a comprehensive guide for deploying

applications on Kubernetes with Helm, empowering users to leverage the full potential of Kubernetes in their

projects.

Key words: Kubernetes, Programming, Software Development, Cloud Computing, Google Cloud Platform

__

INTRODUCTION

KUBERNETES has rapidly emerged as a fundamental technology in contemporary IT infrastructure, finding

widespread adoption across diverse industries. However, the process of deploying applications on Kubernetes

involves the management of numerous entities like deployments, configmaps, and secrets, each meticulously

defined within manifest files. While this method suffices for initial deployments, it becomes unwieldy for

iterative deployment cycles. Herein enters Helm, the Kubernetes package manager engineered to streamline

application deployment, bolster security, and offer configurability. Helm simplifies the deployment workflow by

allowing users to efficiently package and administer Kubernetes applications. This paper delves into the

deployment of Python APIs on Google Cloud Platform's Google Kubernetes Engine (GKE) using Helm,

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

29

covering essential prerequisites, Dockerization, container image pushing, Helm chart creation, GKE cluster

configuration, Helm chart installation, API accessibility, cluster cleanup, and key insights. Through this

exploration, our aim is to furnish a comprehensive guide for deploying applications on Kubernetes with Helm,

empowering users to harness the full capabilities of Kubernetes in their projects.

• Example Project

• Prerequisites

• Install gcloud CLI and Configure

• Dockerize the Project

• Pushing Docker Image to Container Registry

• Building a Helm Chart

• Creating GKE Cluster

• Configure Kuebctl with GKE Cluster

• Installing Helm Chart on GKE Cluster

• Access the Installed API

• Deleting the Cluster

• Summary

• Conclusion

EXAMPLE PROJECT

Here is the Github link for the example project you can just clone and run on your machine.

// clone the projectgit clone https://github.com/bbachi/python-flask-restapi.git

You need to run the following commands to install the required dependencies and start the project.

// install dependencies (Mac OS)python3 -m pip install -r requirements.txt

Figure 1: Flask Run

Figure 2: API Running on port 5000.

PREREQUISITES

If you are new to Python REST API, please go through the below link on how to develop and build the Python

REST API with Flask Restful.

How To Write REST API With Python and Flask (https://medium.com/bb-tutorials-and-thoughts/how-to-

write-rest-api-with-python-and-flask-71ab42d253c5

The other prerequisites to this post are Docker essentials and Kubernetes essentials. We are not going to discuss

the basics such as what a container is or what Kubernetes is, rather, we will see how to build a Kubernetes cluster

on GCP GKE. Below are the prerequisites you should know before going through this article.

https://github.com/bbachi/python-flask-restapi.git

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

30

A. Docker Essentials

You need to understand Docker concepts such as creating images, container management, etc. Below are some of

the links that you can understand about Docker if you are new.

• Docker Docs (https://docs.docker.com/)

• Docker — A Beginner’s guide to Dockerfile with a sample project (https://medium.com/bb-tutorials-

and-thoughts/docker-a-beginners-guide-to-dockerfile-with-a-sample-project-6c1ac1f17490)

• Docker — Image creation and Management (https://medium.com/bb-tutorials-and-thoughts/docker-

image-creation-and-management-9d91e4c277b1)

• Docker — Container Management with Examples (https://medium.com/bb-tutorials-and-

thoughts/docker-container-management-with-examples-c280906158a8)

• Understanding Docker Volumes with an example (https://medium.com/bb-tutorials-and-

thoughts/understanding-docker-volumes-with-an-example-d898cb5e40d7)

B. Kubernetes Essentials

You need to understand Kubernetes’ essentials as well along with Docker essentials. Here are some of the docs to

help you understand the concepts of Kubernetes.

• Kubernetes Docs (https://kubernetes.io/docs/concepts/)

• How to Get Started with Kubernetes (https://medium.com/bb-tutorials-and-thoughts/how-to-get-

started-with-kubernetes-e06ea82d23b)

• Some Example Projects (https://medium.com/bb-tutorials-and-thoughts/docker/home)

C. HELM Essentials

If you are new to HELM or want to get started, here is the article.

How To Get Started with HELM (https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-

helm-b3babb30611f)

D. GCP Prerequisites

• Create a new project.

• You need to create a Billing Account

• Link Billing Account With this project.

• Enable All the APIs that we need to run the dataflow on GCP.

• Download the Google SDK

E. Service Account

Need to create a service account so that when you run the application from your local machine it can invoke the

GCP dataflow pipeline with owner permissions.

Figure 3: Service Account

You must generate the key and download and set the environment variable called

 GOOGLE_APPLICATION_CREDENTIALS.

export GOOGLE_APPLICATION_CREDENTIALS="/Users/bhargavbachina/gcp-credentials/gcp-dataflow-service-

account.json"

Finally, you can run the following command to log in to your GCP account.

gcloud auth login

https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-helm-b3babb30611f
https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-helm-b3babb30611f

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

31

INSTALL GCLOUD CLI AND CONFIGURE

Once you have the GCP Account you can install the gcloud command-line tool. You can go to the below

documentation and install gcloud CLI based on your operation system. You can configure gcloud CLI with your

project.

The gcloud CLI is a part of the Google Cloud SDK (https://cloud.google.com/sdk/docs). You must download

and install the SDK (https://cloud.google.com/sdk/docs/install) on your system and initialize it

(https://cloud.google.com/sdk/docs/initializing) before you can use the gcloud command-line tool.

// initializinggcloud init

// auth logingcloud auth login

Once you run the above command, it opens up a browser for you to login into your GCP and you get the response

as below.

Figure 4: gcloud auth login

You can list the projects with the following command.gcloud projects list

You can set the current project with the following command.gcloud config set project staticweb-test

Figure 5: Configuring the project

DOCKERIZE THE PROJECT

We have seen how to build the project and tun the application in a normal way. Let’s see how we can create a

Dockerfile and run the same application in Docker.

We need to create a Dockerfile that creates a Docker image. Here is the file which starts with FROM command

and with the base image python:3.7. You need to set up a working directory and then copy the contents from the

local directory to the docker directory.

https://gist.github.com/bbachi/a3b16764484f6a0481b78d54f925ee07#file-dockerfile

Then, you need to run the install command so that it installs all the dependencies. Finally, you need to give the

command when the container is instantiated.

// change directorycd python-flask-restapi

// build the imagedocker build -t pythonrestapi

// list the imagedocker images

Figure 6: docker build

https://gist.github.com/bbachi/a3b16764484f6a0481b78d54f925ee07#file-dockerfile

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

32

Now, we have the docker image, and let’s run the container and once it is up and running you can access the

application at http://127.0.0.1:8080/

// run the containerdocker run -d -p 8080:8080 --name pythonrestapi pythonrestapi

// list the containerdocker ps

// logsdocker logs pythonrestapi

// exec into running containerdocker exec -it pythonrestapi /bin/sh

Figure 7: Running Container on the Docker

You can see that the API running on port 8080.

Figure 8: API Running on port 8080

PUSHING DOCKER IMAGE TO CONTAINER REGISTRY

GCP GKE works with any Docker registry such as Docker Hub, etc. But, in this post, we see how we can use a

GCP container registry to store our Docker images. Make sure you enable the relevant API on GCP. If you log in

and go to the Container Registry you can see the empty registry.

Figure 9: Container Registry Console

The first thing we need to do is to enable the API with the following command.

gcloud services enable containerregistry.googleapis.com

You need to configure docker with the following command. You can see the full documentation here

(https://cloud.google.com/container-registry/docs/advanced-authentication)

gcloud auth configure-docker

Figure 10: Configuring Docker

https://cloud.google.com/container-registry/docs/advanced-authentication

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

33

As we have seen in the Example Project section, let’s build the Docker image with the following command.

docker build -t pythonrestapi.

Let’s tag the local docker image with the registry name by using the command:

docker tag [SOURCE_IMAGE] [HOSTNAME]/[PROJECT-ID]/[IMAGE]:[TAG]

// run this commanddocker tag pythonrestapi gcr.io/staticweb-test/restapi:v1

Finally, push the image into the GCP container registry

docker push gcr.io/staticweb-test/restapi:v1

Figure 11: Docker push

You can see the repository in the console as well.

Figure 12: Container registry

BUILDING A HELM CHART

Let’s start with this command so that it creates the default structure for us.

helm create python-api-chart

Figure 13: HELM Create Python-API-Chart

If you look at the example project all we need is deployment and service objects. We don’t need hpa, ingress,

serviceaccount, etc. I am going to delete all these files and keep only the deployment.yml and service.yml files as

below.

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

34

Figure 14: Deployment and Service Objects

You can pass some default values to the Chart with the help of values.yaml file. We have some default values

such as image, number of replicas, name, etc.

https://gist.github.com/bbachi/e2e3aff8fc64071adb5c5b9719c863d1#file-values-yaml

You can pass these values in the deployment and service manifest files below.

https://gist.github.com/bbachi/27dd1edac6c18faad80caf3e40eb95da#file-deployment-yaml

Chart.yaml contains the information about the Chart such as name, version, description, etc.

https://gist.github.com/bbachi/0b82a7b9416eacea9630147f22bea203#file-chart-yaml

We can package the files and directories of a chart into a single archive file. You can just pack it with the

following command.

helm package python-api-chart

Figure 15: HELM Package

CREATING GKE CLUSTER

We have pushed the Docker image into the container registry and it’s time to create a GKE Cluster. You can

create the cluster with the following command.

gcloud container clusters create my-cluster

But, we will see how we can create Cluster through the console. Go to the GKE dashboard in the GCP console.

Click the button to create a cluster.

Figure 16: GKE Dashboard

It asks you some basic questions such as location type, version of Kubernetes, etc.

Figure 17: Creating a GKE Cluster

https://gist.github.com/bbachi/e2e3aff8fc64071adb5c5b9719c863d1#file-values-yaml
https://gist.github.com/bbachi/27dd1edac6c18faad80caf3e40eb95da#file-deployment-yaml
https://gist.github.com/bbachi/0b82a7b9416eacea9630147f22bea203#file-chart-yaml

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

35

Once you click on the create button on the above screen it creates the cluster with three Nodes.

Figure 18: Cluster Created

You can click on the cluster and go to the details section where you can see the nodes.

Figure 19: Three nodes

You can list the clusters with the following command.

gcloud container clusters list

Figure 20: Cluster is in running state

CONFIGURE KUEBCTL WITH GKE CLUSTER

Kubectl is the command-line utility for the Kubernetes. You need to install kubectl before you configure it.

Click on the connect button on the console so that it gives you a command to configure kubectl with the GKE

Cluster.

Figure 21: Cluster

Just copy the below command and run it on your terminal.

Figure 22: Connecting to Cluster

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

36

gcloud container clusters get-credentials api-cluster --zone us-central1-c --project staticweb-test

Once you run this command, kubectl is configured to use GKE Cluster and you can even get the nodes from the

cluster.

Figure 23: kubectl is configured with GKE cluster

INSTALLING HELM CHART ON GKE CLUSTER

We have packaged the Chart into a single archive file. We can install it with the following command.

helm install api-release1 python-api-chart-0.1.0.tgz

Figure 24: Installed

You can see the notes on how to access the application because we have Notes.txt in the Chart folder below. You

can put any information that helps the developers who use your chart.

https://gist.github.com/bbachi/f3273a5a13226853b6f675ebef0feec4#file-notes-txt

You can verify the release with this command helm list

Figure 25: HELM List

You can verify the pods and service installed and running in your cluster with the following commands.

// deploymentkubectl get deploy

//podskubectl get po

// servicekubectl get svc

Figure 26: Successfully Installed

You can verify the same on the GKE cluster by logging into GKE console and clicking on the workloads as

below. As you see there are 10 pods running for this deployment.

Figure 27: Workloads

https://gist.github.com/bbachi/f3273a5a13226853b6f675ebef0feec4#file-notes-txt

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

37

You can see more on the details page.

Figure 28: Details Page

ACCESS THE INSTALLED APPLICATION

We have created deployment and services and now we need to access this deployment from the browser.

We need to get the public IP address of the Kubernetes with this command kubectl cluster-info

Figure 29: kubectl cluster-info

Figure 30: External IP

Let’s access an API with this IP address 34.135.40.231 (where loadbalancer is running) and port 8080 (where the

service port is mapped) with the below URLs. Make sure that you use HTTP instead of HTTPS.

http://34.135.40.231:8080/api/tasks

Accessing the API in the browser

Figure 31: Accessing the application

DELETING THE CLUSTER

You should delete the cluster if you don’t want to incur charges. You can either delete it either on the console or

with the below command.

gcloud container clusters delete frontend-cluster

Figure 32: Deleting Cluster

http://34.135.40.231:8080/api/tasks

Bachina B Euro. J. Adv. Engg. Tech., 2021, 8(11):28-38

38

SUMMARY

• Kubernetes is one of the rapidly growing technology and all the companies are adopting it nowadays.

• When you run any application on Kubernetes you need to deploy so many objects such as deployment,

configmap, secrets, etc. You need to define all these objects in the manifest.yml file and send these

files to the Kubernetes API server.

• Deploying your application one time is ok but if you want to deploy the application again and again

you need to send all the manifest files to the Kubernetes API server again and again. The helm is the

tool that solves this problem.

• Helm is the package manager for Kubernetes and provides solutions for package management, security,

configurability while deploying applications to Kubernetes.

• Helm’s mainly focuses on three things when you are managing applications in the cluster: Security,

Configurability, and Reusability.

• A Chart in a Helm is nothing but a packaged version of your application. A chart is a set of files and

directories that follows some specification for describing the resources to be installed into Kubernetes.

• Helm uses the same configuration by default that kubectl uses and you can change it by exposing the

environment variable either $KUBECONFIG or HELM_KUBECONTEXT.

• We can package the files and directories of a chart into a single archive file with this command helm

package <package-name>

CONCLUSION

In conclusion, Kubernetes stands as a rapidly evolving technology that enjoys widespread adoption across

industries. However, deploying applications on Kubernetes necessitates managing a multitude of objects, from

deployments to configmaps and secrets, defined within manifest files. While initial deployments are

manageable, repetitive deployments pose challenges in sending manifest files repeatedly to the Kubernetes API

server. Enter Helm, the Kubernetes package manager, designed to address this issue. Helm streamlines

application deployment by offering solutions for package management, security, and configurability within

Kubernetes environments. With a primary focus on security, configurability, and reusability, Helm simplifies

the management of applications within the cluster. Utilizing charts, Helm packages application resources into a

structured format, facilitating efficient deployment. Moreover, Helm aligns with kubectl's configuration by

default, offering flexibility through environment variables. By packaging chart files and directories into a single

archive file, Helm provides a seamless deployment experience for Kubernetes applications.

REFERENCES

[1]. Docker Documentation https://docs.docker.com/trusted-content/official-images/

[2]. Kubernetes Documentation https://kubernetes.io/docs/home/

[3]. Helm Documentation https://helm.sh/docs/

[4]. Google Cloud Documentation https://cloud.google.com/docs

[5]. Python Documentation https://docs.python.org/3/

[6]. GCP GKE Documentation https://cloud.google.com/kubernetes-engine/docs

https://docs.docker.com/trusted-content/official-images/
https://kubernetes.io/docs/home/
https://helm.sh/docs/
https://cloud.google.com/docs
https://docs.python.org/3/
https://cloud.google.com/kubernetes-engine/docs

