
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2021, 8(1):107-112

Research Article ISSN: 2394 - 658X

107

Spring Boot Actuator: Monitoring and Managing Production-Ready

Applications

Yash Jani

Sr. Software Engineer Fremont, California, US

yjani204@gmail.com

ABSTRACT

Monitoring and managing production-ready applications are critical aspects of modern software engineering,

especially in microservices architectures. This research paper explores the capabilities of Spring Boot Actuator

[1], a powerful tool for monitoring and managing Spring Boot applications. We delve into the importance of

application monitoring, compare Spring Boot Actuator [1] with other tools, and discuss its key features,

implementation, and real-world use cases. Additionally, this paper addresses common challenges, best practices,

and future directions in application monitoring and management.

Keywords: Spring Boot Actuator [1], application monitoring, application management, system diagnostics, health

endpoints, performance metrics, security [7] measures, remote management, dynamic configuration, cloud

integration, compliance auditing, thread dump, heap dump, Prometheus [2] integration, Grafana visualization [3],

real-time insights, distributed systems, microservices architecture, endpoint security, custom endpoints, machine

learning, artificial intelligence, predictive monitoring, automated remediation, observability, high availability,

system stability

__

INTRODUCTION

In the era of microservices and cloud-native applications, ensuring the health and performance of applications in

production environments is paramount. Spring Boot, a popular framework for building Java-based applications,

simplifies the development process and accelerates time to market. However, the need for robust monitoring and

management tools becomes evident as applications become complex.

Spring Boot Actuator [1] is an extension of Spring Boot that provides production-ready features for monitoring and

managing applications. It offers a comprehensive set of tools to gain insights into application health, metrics, and

other critical aspects. This paper aims to provide an in-depth understanding of Spring Boot Actuator [1], its

features, and its application in real-world scenarios.

The importance of monitoring and managing applications cannot be overstated. Even minor issues can escalate

quickly in a production environment, leading to significant downtime and financial losses. Monitoring tools like

Spring Boot Actuator [1] help in early detection of issues, ensuring higher availability and reliability of

applications.

● Related Work

Several tools and frameworks are available for monitoring and managing applications. Prometheus [2], Grafana,

ELK Stack (Elasticsearch, Logstash, Kibana), and Datadog [4] are prominent. These tools offer various features

such as metrics collection, visualization, and alerting. However, Spring Boot Actuator [1] stands out due to its

seamless integration with Spring Boot applications and its focus on providing essential monitoring and management

capabilities out of the box.

1. Prometheus and Grafana [9] Prometheus [2] is a widely used open-source monitoring system that

collects metrics from configured targets at given intervals, evaluates rule expressions, displays results, and can

trigger alerts if certain conditions are observed. Grafana [3] is an open-source platform for monitoring and

observability that integrates with Prometheus [2] and other data sources to create dynamic, real-time dashboards for

visualizing metrics.

Jani Y Euro. J. Adv. Engg. Tech., 2021, 8(1):107-112

108

2. ELK Stack The ELK [3] Stack, which consists of Elasticsearch, Logstash, and Kibana, is a powerful set of

tools for searching, analyzing, and visualizing log data in real-time. Elasticsearch is a search and analytics engine,

Logstash is a server-side data processing pipeline that simultaneously ingests data from multiple sources, and

Kibana is a visualization tool for Elasticsearch.

3. Datadog Datadog [4] is a monitoring and analytics platform for cloud-scale applications, providing

monitoring of servers, databases, tools, and services through a SaaS-based data analytics platform.

● Comparison with Spring Boot Actuator

Spring Boot Actuator [1] offers a unique blend of simplicity and extensibility compared to the aforementioned

tools. It provides built-in endpoints for health checks, metrics, and application diagnostics, making it an attractive

choice for developers working with Spring Boot. While Prometheus [2], Grafana [3], ELK [3] Stack, and Datadog

[4] provide extensive monitoring and visualization capabilities, Spring Boot Actuator [1] integrates seamlessly with

Spring Boot applications. It can be extended to work with these tools, offering a streamlined and efficient

monitoring solution.

SPRING BOOT ACTUATOR: AN OVERVIEW

Spring Boot Actuator [1] is designed to provide various monitoring and management features for Spring Boot

applications. It includes a set of built-in endpoints that expose information about the application’s health, metrics,

environment, and other aspects. These endpoints can be easily accessed and integrated with other monitoring tools.

Core Features and Functionalities

● Endpoints: Actuator [1] provides numerous endpoints such as /health, /metrics, /info, and more. These

endpoints can be accessed via HTTP or JMX [5].

● Health Checks: Actuator [1] offers built-in health checks that provide information about the application's

health status, including database connectivity, disk space, and more.

● Metrics: Actuator [1] collects various metrics related to the application’s performance and resource usage.

These metrics can be customized and extended as needed.

● HTTP Tracing: Actuator [1] supports tracing HTTP requests to help diagnose issues and monitor

application performance.

● Auditing: Actuator [1] includes auditing capabilities to track and log significant events within the

application.

IMPLEMENTATION AND CONFIGURATION

Configuration Options and Customization

Spring Boot Actuator [1] provides various configuration options to customize its behavior. These configurations

can be specified in the application.properties or application.yml file. For example, to enable or

disable specific endpoints, you can use the following properties:

Securing Actuator Endpoints

Securing Actuator [1] endpoints is crucial to prevent unauthorized access to sensitive information. Spring Security

[7] can be integrated to secure these endpoints. Here is an example of securing the /actuator endpoints:

management.endpoints.web.exposu

re.inc lude=health,info,metrics

management.endpoint.health.show

-detai ls=always

<dependency>

<groupId>org.springframework.boo

t</gr oupId>

<artifactId>spring-boot-starter-

Actua tor</artifactId>

</dependency>

Jani Y Euro. J. Adv. Engg. Tech., 2021, 8(1):107-112

109

MANAGING APPLICATIONS WITH SPRING BOOT ACTUATOR

Application Management Through Actuator Endpoints

Spring Boot Actuator [1] provides extensive application management capabilities through its diverse endpoints.

Each endpoint serves a specific purpose:

● /shutdown: Facilitates a controlled application shutdown, allowing for graceful termination and resource

cleanup.

● /env: Offers a comprehensive view of the environment properties, enabling troubleshooting and verifying

configuration settings.

● /configprops: Displays a collated list of all @ConfigurationProperties, making auditing and reviewing

application configurations easier.

● /threaddump: Provides a snapshot of thread states within the JVM, invaluable for diagnosing deadlocks

and performance bottlenecks.

Application Status and Diagnostics

Spring Boot Actuator [1] also provides health information:

● /health: This endpoint provides vital health information about the application, detailing the status of

critical components such as database connections, disk space, and custom health indicators. It supports the

aggregation of health indicators from all running instances, which is crucial for microservices architecture.

● /info: Can be customized to show application-specific information like version numbers, descriptions, or

any other necessary details.

Remote Management Capabilities

Spring Boot Actuator [1]'s endpoints are especially advantageous for remote management in distributed systems [8]

or cloud deployments:

● /beans: Lists all the beans configured in the application context, providing remote insight into the bean

creation and dependency injection.

● /mappings: Displays a consolidated list of all @RequestMapping paths, which helps understand the

exposed HTTP endpoints and their configurations.

Practical Examples and Scenarios

● Scenario 1: Remote Application Management

import

org.springframework.context.anno

tatio n.Configuration;

import

org.springframework.security.con

fig.a

nnotation.web.builders.HttpSecur

ity; import

org.springframework.security.con

fig.a

nnotation.web.configuration.WebS

ecuri tyConfigurerAdapter;

@Configuration

public class SecurityConfig

extends

WebSecurityConfigurerAdapter {

@Override

protected void

configure(HttpSecurity http)

throws Exception {

http.authorizeRequests()

.requestMatchers(EndpointRequest

.toAn

yEndpoint()).authenticated()

.and()

.httpBasic();
}

}

Jani Y Euro. J. Adv. Engg. Tech., 2021, 8(1):107-112

110

For remote management capabilities, especially using endpoints like /restart, you'll need to ensure that this

endpoint, along with other basic management endpoints, is exposed:

Note: The /restart endpoint is part of the Spring Cloud context and needs to be explicitly enabled as shown.

● Scenario 2: Dynamic Configuration Updates

To dynamically update configurations using the /refresh endpoint, you would typically be using Spring Cloud's

Actuator [1]:

● Scenario 4: Security and Compliance Auditing

To audit security events, the /audit events endpoint can be utilized:

Again, the /refresh endpoint is specific to Spring Cloud and requires that the Spring Cloud Context library is

included in your project.

● Scenario 3: Detailed Diagnostics and Troubleshooting

For downloading heap dumps and thread dumps, which are critical for diagnosing memory issues and bottlenecks:

allowing you to analyze the state of memory and thread usage directly from the Actuator [1].

management.endpoint.restart.enab

led=t rue

Jani Y Euro. J. Adv. Engg. Tech., 2021, 8(1):107-112

111

This will allow you to access and monitor audit events, which is crucial for applications that adhere to strict

compliance and security standards.

● General Configuration for All Scenarios

To ensure your application is secure, particularly when exposing sensitive endpoints, you should also consider

securing these endpoints using Spring Security. Here’s a basic example to secure endpoints:

This configuration will require basic authentication to access the Actuator [1] endpoints, enhancing the security of

your application's management interfaces. By adjusting the application.properties file as shown in each

scenario, you enable and expose the necessary Spring Boot Actuator [1] endpoints to support various management

and monitoring tasks effectively.

CHALLENGES AND BEST PRACTICES

1. Common Challenges

● Security Risks: Exposing Actuator [1] endpoints can pose security risks if not properly secured.

● Performance Overhead: Collecting and exposing metrics can introduce performance overhead.

● Complex Configurations: Customizing health checks and metrics can be complex in large applications.

2. Best Practices for Effective Monitoring and Management

● Secure Endpoints: Always secure Actuator [1] endpoints using Spring Security or other security

mechanisms.

● Optimize Metrics Collection: Balance the need for detailed metrics with the potential performance

impact.

● Regularly Update Configurations: Keep configurations and dependencies up to date to leverage new

features and improvements.

FUTURE DIRECTIONS

● Emerging Trends in Application Monitoring and Management

The landscape of application monitoring and management continuously evolves with new technologies and

approaches. Adopting observability practices, which go beyond traditional monitoring, is becoming more prevalent.

Observability emphasizes understanding the internal state of a system based on the data it produces, including logs,

metrics, and traces.

● Future Enhancements in Spring Boot Actuator

Spring Boot Actuator [1] is expected to evolve with new features and enhancements. Future versions may include

more advanced metrics, better integration with cloud-native environments, and enhanced support for distributed

tracing [8].

● Potential Areas of Research

There are several potential areas for research in Spring Boot Actuator [1] and application monitoring:

• Integration with Machine Learning: Exploring how machine learning algorithms can be integrated with

Spring Boot Actuator [1] to predict and detect anomalies in real-time.

• Enhanced Security Measures: Research new methods to secure Actuator [1] endpoints more effectively

without compromising functionality.

• Performance Optimization: Investigating techniques to minimize the performance overhead introduced

by monitoring and management tools.

CONCLUSION

Throughout this exploration of Spring Boot Actuator [1], we have delved deeply into its robust suite of features that

bolster the monitoring and management of applications built with Spring Boot. The Actuator

[1] provides a critical toolkit for developers and administrators, facilitating real-time insights into application

health, performance metrics, and operational status through its comprehensive endpoints.

Security considerations, a non-negotiable aspect of modern software operations, are adeptly handled by Spring Boot

Actuator [1]. The ability to secure sensitive endpoints and ensure that monitoring tools comply with rigorous

security standards reflects the framework's commitment to safe and reliable application management. This is crucial

in maintaining trust and integrity in systems that handle sensitive data or operate in regulated industries. Looking

forward, the evolution of Spring Boot Actuator [1] is likely to be influenced by advancements in cloud

Basic auth configuration for

securing endpoints

spring.security.user.name=admin

spring.security.user.password=s

trongp assword

Jani Y Euro. J. Adv. Engg. Tech., 2021, 8(1):107-112

112

technologies, artificial intelligence, and machine learning [11]. Potential enhancements could include more

predictive capabilities, using AI to anticipate issues before they impact the application and automated remediation

measures that further reduce the need for human intervention. As the digital infrastructure becomes increasingly

complex, tools like Spring Boot Actuator [1] will become more central, not just as facilitators of monitoring and

management but as proactive guardians of system stability and performance.

In conclusion, Spring Boot Actuator [1] emerges not only as a tool but as an essential framework component that

empowers developers and system administrators to oversee and manage applications more effectively [12]. Its deep

integration capabilities, coupled with the potential for expansion in response to emerging tech trends, position it as

an indispensable asset in the toolbox of anyone responsible for maintaining robust, efficient, and secure applications

in the contemporary digital landscape.

REFERENCES

[1]. "Spring Boot Actuator." Spring Framework, spring.io.

[2]. "Prometheus - Monitoring System & Time Series Database." prometheus.io.

[3]. "Grafana: The Open Observability Platform." grafana.com.

[4]. "ELK Stack: Elasticsearch, Logstash, Kibana."Elastic, elastic.co/what-is/elk-stack.

[5]. "Datadog: Cloud Monitoring as a Service." datadoghq.com.

[6]. "Monitoring and Management over JMX." Oracle, docs.oracle.com.

[7]. “Spring Security Reference.” Spring Framework, spring.io.

[8]. Burns, B., D. (2019). "Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable

Services." O'Reilly Media.

[9]. "Integrating Spring Boot Actuator with Prometheus and Grafana." DZone, dzone.com.

[10]. F. Gutiérrez, "Spring Boot Actuator".

[11]. R. P. J. C. Bose, K. Singi, V. Kaulgud, S. Podder and A. P. Burden, "Software Engineering in a Governed

World: Opportunities and Challenges".

[12]. "Better monitoring with Spring boot Actuator".

