
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2020, 7(9):78-84

Research Article ISSN: 2394 - 658X

78

Automating Software Testing: A Comparative Study of Machine

Learning and Traditional Approaches

Kodanda Rami Reddy Manukonda

reddy.mkr@gmail.com

ABSTRACT

This abstract provides a thorough analysis of the differences between standard software testing process

automation methods and machine learning (ML) techniques. The need for effective testing approaches has

increased due to the software development processes' quick evolution. Conventional testing techniques,

however dependable, frequently find it difficult to keep up with the complexity and size of contemporary

software systems. On the other hand, machine learning approaches present viable ways to automate certain

parts of software testing by using algorithms to enhance the creation of test cases, identify abnormalities, and

analyze patterns. We compare the efficacy, efficiency, and scalability of machine learning (ML)-based testing

to traditional methods across a variety of software development scenarios in this paper. We assess test

coverage, fault detection rates, resource utilization, and maintenance overhead through a series of experiments

and case studies. Our research offers insightful information about the relative advantages and drawbacks of ML

versus conventional techniques, illuminating the best practices for incorporating machine learning into software

testing processes. By helping practitioners and researchers make well-informed decisions when choosing the

best techniques for their unique testing requirements, this research advances the state-of-the-art in automated

testing methods.

Keywords: software testing, testing automation, machine learning, artificial intelligence, and software testing

tools

__

INTRODUCTION

Ensuring the reliability and quality of software frameworks is crucial in the dynamic field of software

development. Software testing is a crucial component of this cycle that aims to identify defects, errors, and

vulnerabilities in software programs [1]. Software testing has always been a laborious and demanding process

that frequently calls for physical labor and extensive resources. That being said, there is growing interest in

automating software testing cycles to increase efficiency and viability as a result of advances in machine

learning (ML) [2]. This study offers a comparative analysis of machine learning and traditional approaches to

automating software testing, highlighting their respective benefits, drawbacks, and potential uses [3].

A fundamental cycle of software development, software testing aims to identify errors and ensure that the

program operates as intended [4]. It entails running the software in a controlled manner to verify that it satisfies

the requirements and to find any discrepancies between expected and actual behavior [5]. Software testing has

traditionally been thought of as a specific step in framework improvement, but it is increasingly seen to be a

continuous activity that needs to be managed throughout the plan, improvement, and support stages [6].

Integration of Manual and Automated Testing Strategies

Using the advantages of each approach, this research suggests a tool to coordinate testing methods that are both

mechanical and manual. The general testing cycle can benefit from both the expertise and reproducibility of

automated testing as well as the human knowledge and instinct of manual testing by combining the two types of

Manukonda KRR Euro. J. Adv. Engg. Tech., 2020, 7(9):78-84

79

testing. Additionally, integrating computer testing into the process takes into account the basis of relapse testing

data sets, utilizing the repurposing of ensuing tests to identify bugs. Additionally, for both human and automated

tests, proportions of inclusion, such as code, dataflow, and detail inclusion, can be reported, providing a

comprehensive assessment of the testing system [7].

Figure 1: Automation Testing Cycle

• Manual Testing

Human analysts carry out tests as part of manual testing, focusing on examining the functionality and

behaviour of the software. Common manual testing systems include unit, module, sub-framework, and

framework testing. While module testing focuses on evaluating assortments of ward pieces, unit testing

verifies specific program components. Sub-framework testing involves evaluating various

combinations of modules, whereas framework testing certifies that the framework as a whole satisfies

its non-utilitarian and practical requirements. Acknowledgment testing is part of alpha testing, the final

phase prior to functional use, which ensures that the framework handles client issues [8].

• Automated Testing

On the other hand, automated testing relies on scripts and software tools to carry out tests. Mechanized

testing provides competency and repeatability, whereas manual testing brings the benefits of human

judgment and instinct. Robotized testing accelerates the testing system and enables faster input cycles

by computerizing boring and laborious testing assignments. However, there may be limitations to

computerized testing in terms of test inclusion and its ability to identify specific types of flaws [9].

Understanding Traditional Software Testing Approaches

The planning, carrying out, and evaluating of manual experiments are standard procedures used in software

testing. This cycle entails designing tests based on predetermined requirements and conclusions, followed by

carrying out these experiments to find flaws or shortcomings in the program that is being tested. Manual testing

methodologies, such as white-box, black-box, and joining testing, rely on human intuition and skill to identify

potential problems in software systems. Even though traditional testing methods have been widely used and

shown to be effective in most circumstances, they are frequently constrained by factors like inclusion,

repeatability, and adaptability [10].

Figure 2: Comparison Of Deep Learning and Traditional Machine Learning Methods

The Role of Machine Learning in Automating Software Testing

Technological advances in machine learning present intriguing solutions to computerize several aspects of

software testing, addressing many of the challenges associated with traditional approaches. To organically

generate trials, concentrate on test execution, and identify instances or anomalies typical of potential software

flaws, ML computations can be prepared on real test data. Through the use of machine learning techniques such

Manukonda KRR Euro. J. Adv. Engg. Tech., 2020, 7(9):78-84

80

as controlled learning, unassisted learning, and support learning, computerized testing instruments can improve

with time in terms of accuracy and suitability. Additionally, ML-based testing techniques may be able to scale

across large, intricate software frameworks, enabling more thorough test inclusion and faster input cycles.

Objectives of the study

1. To evaluate the effectiveness and efficiency of machine learning-based automated testing compared to

traditional manual testing approaches

2. To identify the strengths and limitations of both machine learning and traditional approaches in

automating software testing.

LITERATURE REVIEW

Arcuri et.al (2019) address the fundamental problem of assuring the integrity and robustness of RESTful APIs

in modern software development. This is a problem that has become increasingly important in recent years.

When it comes to allowing communication between different dispersed system parts, RESTful application

programming interfaces (APIs) are vital components. However, evaluating their functionality in a thorough

manner presents a considerable difficulty. In the field of software testing procedures, particularly in the realm of

web services and distributed systems, the launch of EvoMaster by Arcuri represents a revolutionary

advancement. EvoMaster is able to generate a wide variety of test cases that exercise a variety of functionalities

and edge cases by utilizing evolutionary algorithms. This allows EvoMaster to methodically investigate the

input space of RESTful APIs. Because of this rigorous approach, not only is test coverage improved, but also

effectiveness is increased, which ultimately results in an improvement in the overall quality and dependability of

RESTful API implementations. The study conducted by Arcuri is considered to be a cornerstone in the area. It

provides researchers and practitioners alike with a strong tool that may guarantee the correctness and resilience

of RESTful API-based systems or applications [11].

Marginean et.al (2019) makes a substantial contribution to the field of software maintenance and repair by

presenting a unique method to the problem under investigation. When it comes to large software systems, the

presence of software defects is a significant risk to both the stability and performance of the system. The

conventional approaches of debugging and repair can prove to be arduous and time-consuming, particularly in

the context of large-scale software projects. By introducing Sapfix, an automated repair tool that is meant to find

and resolve issues in an end-to-end way, Marginean and the team are able to tackle this difficulty head-on.

Sapfix is able to autonomously diagnose, localize, and resolve software issues with minimal assistance from

humans. This is accomplished by utilizing machine learning techniques and drawing from huge repositories of

code. The process of repairing software is simplified as a result of this paradigm change in software

maintenance, which also helps to reduce downtime and improve overall system reliability. The work that was

done by Marginean and colleagues represents a key milestone in automated software repair approaches. It

provides a solution that is scalable and was designed to reduce the impact that software faults have on complex

systems [12].

Calò et.al (2020) research, which is very important. The importance of guaranteeing the safety and

dependability of these systems cannot be overstated in light of the growing number of autonomous vehicles on

the road. In the process of testing autonomous driving systems, one of the most significant issues is the

generation of test scenarios that are both realistic and thorough, covering a wide variety of possible vehicle

driving scenarios. In order to tackle this difficulty, Calò and colleagues have proposed a system that may

generate collision scenarios that can be avoided, which would allow for comprehensive testing of algorithms

used in autonomous vehicles. Their technique makes it easier to identify probable failure sources and validate

collision avoidance capabilities in autonomous cars by modeling real-world scenarios in controlled conditions.

This is accomplished through the use of simulation. This research makes a significant contribution to the field of

autonomous systems testing by providing novel insights and approaches. These findings have the potential to

improve the safety and dependability of vehicles that drive themselves [13].

Abdessalem et.al (2018) investigates the testing of autonomous vehicles to determine whether or not there are

feature interaction shortcomings. Additionally, as the technology behind autonomous vehicles continues to

progress, the complexity of these systems continues to increase, which in turn increases the potential of

unanticipated interactions between various elements. It is possible for feature interaction failures to have

Manukonda KRR Euro. J. Adv. Engg. Tech., 2020, 7(9):78-84

81

significant repercussions for the safety and dependability of autonomous driving systems. For the purpose of

systematically identifying and mitigating feature interaction errors in autonomous vehicles, Abdessalem et al.

suggest a search strategy that utilizes multiple objectives. Their method, which makes use of evolutionary

algorithms and multi-objective optimization techniques, makes it possible to detect and resolve feature

interaction difficulties in an effective manner, hence contributing to the overall dependability of autonomous

vehicle systems. Through this research, a significant part of testing autonomous systems is addressed, and

practical solutions are provided for ensuring the safe and reliable operation of these systems in environments

that are representative of the actual world [14].

Goues et.al (2019) present a comprehensive and incisive overview of automated program repair approaches.

These techniques are essential in minimizing the widespread problem of software flaws in the field of software

development. Due to the fact that software flaws can result in system crashes, vulnerabilities, and a variety of

other negative effects, the requirement for efficient bug-fixing techniques is of the utmost importance.

Automated program repair is a potential option since it enables the automatic identification and correction of

software errors without the need for human interaction during the process. A wide variety of automated repair

approaches, such as program synthesis, fault localization, and automated testing, are methodically investigated

by Goues and the team. They investigate the advantages, disadvantages, and prospective applications of each of

these techniques. The process of automatically producing computer code to correct deficiencies that have been

identified is referred to as program synthesis. Fault localization techniques are utilized to assist in identifying the

underlying causes of software faults. The validation and verification of the efficiency of the repair operations are

both significantly aided by the utilization of automated testing approaches. Providing insights and

methodologies to improve software quality, reliability, and robustness through automated bug-fixing

mechanisms, the research conducted serves as a valuable resource for both software developers and researchers.

This is because the research elucidates these techniques and discusses the practical implications of these

techniques. This thorough review not only makes a contribution to the theoretical knowledge of automated

program repair, but it also offers practical assistance for utilizing these techniques in real-world software

development scenarios, thereby contributing to the advancement of the state-of-the-art in software engineering

practices [15].

COMPARATIVE STUDY OF MANUAL VS AUTOMATED TESTING

Automated vs. Manual Testing

There are two main approaches that are used in software quality assurance: automated testing and manual

testing. These techniques show different ways to find flaws and guarantee the performance and dependability of

software.

Comparative Analysis of Manual Testing

• Time-Consuming Nature: Because manual testing depends on human interaction at every stage of the

testing process, it frequently requires a significant time and effort commitment.

• Lack of Learning Opportunities: Because manual test execution may not present testers with cutting-

edge obstacles or technological advancements, manual testing may not provide ongoing learning

opportunities.

• Risk of Neglect: There is a real possibility that manual testing will be neglected, which could result in

insufficient test coverage and possibly miss important software flaws.

• Difficulty in Test Maintenance: Keeping an extensive list of manual tests up to date and making sure

they are consistently run may be very difficult, especially as software programs change.

• Limited Reusability: Because manual tests must be repeated for several stakeholders, they are usually

not reusable across testing cycles, leading to redundant work.

• Integration Testing Bias: Inadvertently, manual testing may prioritize integration testing above the

isolation and testing of separate software modules or components.

• Lack of Scripting Facilities: Because scripting is not integrated into manual testing, it is difficult to

automate repetitious test jobs and situations.

Manukonda KRR Euro. J. Adv. Engg. Tech., 2020, 7(9):78-84

82

Advantages of Automated Testing

• Speed: When compared to human users, automated tests have substantially faster execution times,

which allows for timely feedback on software quality.

• Reliability: Automated tests reduce the possibility of human error and provide reliable test results by

constantly carrying out the same activities with each execution.

• Programmability: Sophisticated testing scenarios can be written to be executed by automated tests,

which can reveal latent problems and offer important insights into the behavior of software.

• Comprehensiveness: Automation makes it possible to create exhaustive test suites that cover every

aspect of a program, guaranteeing complete test coverage.

• Reusability: Because automated tests may be reused in several testing cycles, they reduce the time and

effort needed for repeated testing jobs.

Cost Model Based Analysis

Opportunity Cost Consideration: To balance automated and manual testing under budgetary constraints, a

linear optimization-based cost model is suggested. The opportunity cost of automating test cases as opposed to

carrying out manual test cases is taken into consideration by this methodology.

Real Example and Scenario Analysis

A specific model is provided to illustrate the potential applications of the suggested cost model under various

testing scenarios. This model takes into account things like the benefits of automated testing based on chance

openness and the goal of increasing test inclusion through manual testing.

Scenario A: In this case, the objectives are to test at least one delivery in its entirety and to survey the most

fundamental 50% of the framework across all deliveries. These objectives align with constraints R3.1 and R2.2.

Figure 3 illustrates the optimal configuration, which is located at point S1 (na = 50, nm = 100) on the creation

prospects wilderness denoted by R1. Thus, all trials should undergo manual testing once, and 50 experiments

related to the most fundamental 50% of the framework should be computerized.

Figure 3: Scenario of Auto vs. Manual A

Scenario B: The goals are to test about one delivery in its whole and evaluate the lowest 20% of the framework

for every delivery. These objectives are related to constraints R3.1 and R2.1. Any point inside Figure 4's hidden

area satisfies these requirements. The objective capability, nevertheless, ensures that the optimal configuration is

between focuses S1 (na = 50, nm = 100) and S2 (na = 20, nm = 220) on the creation prospective wilderness

represented by R1.

Manukonda KRR Euro. J. Adv. Engg. Tech., 2020, 7(9):78-84

83

Figure 4: Scenario of Auto vs. Manual B.

Scenario C: This scenario aims to assess the most fundamental 50% of the framework for all deliveries and test

around two deliveries in total. Goals R3.2 and R2.2 are managed by limits. However, as shown in Figure 5,

there isn't a solution that satisfies the two constraints.

Figure 5: Scenario of Auto vs. Manual C.

FUTURE SCOPE

The field of software testing is constantly changing, and the use of machine learning (ML) techniques in

conjunction with more conventional methods could lead to exciting developments in the future. This

comparative analysis predicts that machine learning (ML) techniques will improve testing efficiency through

task automation, faster anomaly and vulnerability detection, and support for adaptable testing approaches. ML

can maximize test coverage, forecast possible problems, and improve the overall quality of software products by

utilizing large datasets. In addition, machine learning's capacity to draw lessons from previous testing

encounters might result in proactive risk reduction and ongoing enhancement, making it a crucial instrument in

the development of dependable and durable software systems.

CONCLUSION

In software testing, there is always a constant pursuit of efficiency, accuracy, and thorough coverage.

"Automating Software Testing: A Comparative Study of Machine Learning and Traditional Approaches"

provides insightful information about the subtle factors that go into developing test strategies. By means of a

thorough analysis, the research elucidates the various benefits and drawbacks that are intrinsic to both

automated and manual testing approaches. With its superior speed, dependability, and programmability made

possible by specialized tools and scripting capabilities, automated testing proves to be a powerful ally. On the

other hand, manual testing is still necessary in situations when human intuition and sophisticated analysis are

needed, even though it is labor-intensive. The research highlights the significance of striking a balance between

automated and manual testing while adhering to financial restrictions. It also highlights the use of advanced cost

models and scenario analysis to maximize resource use. Moreover, it highlights the revolutionary potential of

cutting-edge technologies such as machine learning, which have the ability to completely change traditional

testing paradigms through the improvement of predictive analysis and test automation. In the end, the study

promotes a context-driven methodology for software testing and the deployment of cutting-edge technologies in

tandem with the automated and manual approaches' synergistic integration. With this strategy, businesses can

confidently manage the complexity of contemporary software development and produce software solutions that

satisfy end users' changing needs while maintaining high quality and resilience.

Manukonda KRR Euro. J. Adv. Engg. Tech., 2020, 7(9):78-84

84

REFERENCES

[1]. Durelli, V. H., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R., & Guimarães, M. P.

(2019). Machine learning applied to software testing: A systematic mapping study. IEEE Transactions

on Reliability, 68(3), 1189-1212.

[2]. Braiek, H. B., & Khomh, F. (2020). On testing machine learning programs. Journal of Systems and

Software, 164, 110542.

[3]. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., & Tonella, P. (2020). Testing

machine learning based systems: a systematic mapping. Empirical Software Engineering, 25, 5193-

5254.

[4]. Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta, L. R., Rangamani, A., ... & Lazovich, T.

(2018). Automated software vulnerability detection with machine learning. arXiv preprint

arXiv:1803.04497.

[5]. Jan, B., Farman, H., Khan, M., Imran, M., Islam, I. U., Ahmad, A., ... & Jeon, G. (2019). Deep learning

in big data analytics: a comparative study. Computers & Electrical Engineering, 75, 275-287.

[6]. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T. F., & Klein, J. (2018). Automated testing of android

apps: A systematic literature review. IEEE Transactions on Reliability, 68(1), 45-66.

[7]. Takanen, A., Demott, J. D., Miller, C., & Kettunen, A. (2018). Fuzzing for software security testing

and quality assurance. Artech House.

[8]. Le, V. M., Felfernig, A., Uta, M., Benavides, D., Galindo, J., & Tran, T. N. T. (2021, May).

DirectDebug: Automated testing and debugging of feature models. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-

NIER) (pp. 81-85). IEEE.

[9]. Tian, Y., Pei, K., Jana, S., & Ray, B. (2018, May). Deeptest: Automated testing of deep-neural-

network-driven autonomous cars. In Proceedings of the 40th international conference on software

engineering (pp. 303-314).

[10]. Liu, K., Koyuncu, A., Kim, D., & Bissyandé, T. F. (2019, July). Tbar: Revisiting template-based

automated program repair. In Proceedings of the 28th ACM SIGSOFT international symposium on

software testing and analysis (pp. 31-42).

[11]. Arcuri, A. (2019). RESTful API automated test case generation with EvoMaster. ACM Transactions on

Software Engineering and Methodology (TOSEM), 28(1), 1-37.

[12]. Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., ... & Scott, A. (2019, May).

Sapfix: Automated end-to-end repair at scale. In 2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 269-278). IEEE.

[13]. Calò, A., Arcaini, P., Ali, S., Hauer, F., & Ishikawa, F. (2020, October). Generating avoidable collision

scenarios for testing autonomous driving systems. In 2020 IEEE 13th International Conference on

Software Testing, Validation and Verification (ICST) (pp. 375-386). IEEE.

[14]. Abdessalem, R. B., Panichella, A., Nejati, S., Briand, L. C., & Stifter, T. (2018, September). Testing

autonomous cars for feature interaction failures using many-objective search. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering (pp. 143-154).

[15]. Goues, C. L., Pradel, M., & Roychoudhury, A. (2019). Automated program repair. Communications of

the ACM, 62(12), 56-65.

