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ABSTRACT 

Detecting water pipeline leaks is crucial for ensuring the safe operation of water supply networks and 

conserving water resources. To overcome the limitations of traditional leak detection methods, this study 

presents a novel approach utilizing machine learning and wireless sensor networks (WSNs). The system 

deploys wireless sensors along pipelines to gather data and leverages 4G networks for remote data 

transmission. An energy-efficient networking method triggered by leaks is introduced to optimize WSN energy 

consumption and prolong system longevity. To enhance detection accuracy and intelligence, a leakage 

identification methodology is proposed, incorporating intrinsic mode function, approximate entropy, and 

principal component analysis to construct a comprehensive signal feature set. The detection process uses 

support vector machine (SVM) as a classifier. Simulation and experimental results validate the efficacy of the 

proposed method in accurately identifying water pipeline leaks while demonstrating lower energy consumption 

compared to conventional WSN networking methods. 
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INTRODUCTION 

Water serves as the foundational substance supporting human life and the existence of all living organisms. It is 

an essential natural resource crucial for the advancement of human society. The demand for water resources is 

surging due to population growth, economic development, and shifting consumption patterns, with expectations 

of a significant acceleration in the next two decades. However, a critical issue lies in the wastage of water 

resources caused by leakage from water pipelines. Research by the World Bank revealed an annual leakage from 

water pipelines exceeding 48.6 billion m3, leading to economic losses of approximately US$14.6 billion. 

Globally, water pipeline leakage rates surpass 10% in one-third of countries, reaching 23% in the EU, 13% in 

the U.S. and Canada, 22% in Asia, 35% in Latin America, and 30% in Africa. Consequently, the exploration of 

high-performance water pipeline leakage detection technologies holds immense significance for safeguarding 

water resources and fostering economic development. The primary causes of water pipeline leakage encompass 

the corrosive nature of soil, substandard pipe material quality, temperature and pressure variations, non-

adherence to standard pipe laying methods, geological changes, and human-induced damage. Detecting these 

leaks is challenging as most water pipelines are situated deep underground, making prompt discovery difficult. 

Leakage, often subtle or undetectable, results in significant water resource wastage. Thus, effective and accurate 

detection of underground water pipeline leakage is of utmost importance. Both academic researchers and 

industry experts have conducted extensive research and developed various detection methods. Among the 

earliest methods is the listening system, relying on personnel to detect changes in volume and sound quality of 

leakage noise for pinpointing leakage areas. Ground-penetrating radar and methods based on internal pressure 

changes have also been explored, each presenting its own set of challenges. Additionally, studies incorporating 
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spectral analysis, piezoelectric accelerometers, linear predictive coding coefficients, and hidden Markov models 

have been undertaken, although facing limitations. Notably, wireless sensor networks (WSNs) offer a promising 

solution to address these challenges. Leveraging superior sensing capabilities, communication protocols, 

processor speed, and data collection advantages, WSN technologies have found widespread applications in 

monitoring. For instance, PipeNet, a wireless sensor network-based system, has been proposed to monitor water 

flow and detect leaks by employing acoustic and vibration sensors on large bulk-water pipelines and pressure 

sensors on normal pipelines.  In contrast to the PipeNet initiative, the PipeProbe system operates without the 

assumption that water pipe surfaces are exposed and accessible for sensor module attachment. PipeProbe can be 

deployed into the source of a water pipeline, traversing it while collecting the necessary sensor readings for 

reconstructing the 3D spatial layout of the traversed water pipelines. A wireless sensor network named 

WaterWiSe@SG was proposed to showcase the application and control of a low-cost wireless sensor network 

with high data rates, enabling real-time monitoring of a water distribution network in Singapore. The goal of 

WaterWiSe@SG was to develop generic wireless sensor network capabilities for real-time monitoring of a 

water distribution network.This paper introduces a water pipeline monitoring system based on wireless sensor 

networks and a leakage identification method using support vector machines (SVM). Machine learning, which 

simulates knowledge acquisition through human learning activities, facilitates automatic system performance 

improvement. Its wide application includes speech and biological affect identification, physiological signal 

detection, body movement identification, and signal feature detection and identification. The proposed system 

utilizes ZigBee nodes as signal collection nodes and employs the 4G network to transmit signals from sensors to 

the data processing center. To address high networking power consumption in conventional wireless sensor 

networks, we propose a leakage-triggered networking method capable of networking and performing data 

transmission from wireless sensor nodes near leakage points, effectively reducing network energy consumption 

and extending its life cycle.Distinguishing between leakage and non-leakage signals based on time-frequency 

features, we propose a leakage detection method that constructs feature matrices using intrinsic mode function, 

approximate entropy, and principal component analysis (PCA). SVM serves as a classifier to identify leaks. 

Experiments are conducted along an exposed aluminum-plastic composite pipe with a diameter of 27 mm, using 

the CT1010 acceleration sensor due to its sensitivity. The water pressure during experiments is maintained at no 

less than 0.3 MPa, and the detectable leaking flow rate is calculated to be approximately 2.5 cm3/s based on 

pipe pressure. Experimental and simulation results demonstrate the effectiveness of the proposed methods in 

detecting leaks and prolonging the lifetime of the wireless sensor network. 

 

WATER PIPELINE LEAKAGE MONITORING SYSTEM BASED ON ZIGBEE TECHNOLOGY 

We designed a water pipeline monitoring system based on a ZigBee and 4G wireless communication system.It 

included a ZigBee wireless network, a gateway, and a data processing center. The system architecture is shown 

in Figure 1. The ZigBee wireless sensor was constructed from terminal nodes, coordinators, and routers. The 

terminal node employed an acoustic sensor to acquire signals from pipeline leakage, and the coordinator relied 

on serial ports and a gateway to establish a linkage and maintain the two-way transmission of data and control 

commands between the terminal nodes and the gateway. The gateway also took advantage of the 4G network to 

upload data collected by the sensors to the host for storage and processing. In this system, the ZigBee nodes 

employed CC2530, and the Zstack protocol was used for data transmission. The system’s gateway employed 

STM32F103VET6 as its chief control element and used a built-in 4G module to perform networking functions. 

The gateway and ZigBee coordinator communicated via a serial port, which enabled the data processing center 

to monitor and control the ZigBee wireless sensor network. The gateway used its built-in multithreading TCP 

server to monitor requests from the host and transmit data after establishing a connection. The host’s functions 

included display of the remote pipeline monitoring system, interactive controls, and signal processing. 

The host's software was crafted using C# and SQL, incorporating the TCP protocol and TCP server on the 

gateway to establish network connections. It received control commands and data transmissions from the 

ZigBee wireless sensor network. Operating within the specified parameters, the CC2530 boasted a nominal 

maximum operating distance of 75m, while research confirmed the reliable range of ZigBee nodes to be 60m in 

a line-of-sight (LOS) environment [45,46]. Employing NI's MCC BTH-1208LS data acquisition card, data was 

stored on the host computer for signal analysis. The experiment utilized the CT1010 acceleration sensor for its 

sensitivity, aligning seamlessly with the data acquisition card. In Figure 2, the results display the packet loss rate 
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of the system's terminal nodes in a non-line-of-sight (NLOS) environment, varying with the intervals between 

nodes. To uphold the reliability of the system's data transmissions, it is imperative to maintain intervals between 

CC2530 nodes at approximately 30m. 

 
Figure 1: System architecture for pipeline monitoring 

 

 
Figure 2: CC2530 packet loss rate under NLOS conditions 

 

A. Leakage Triggered ZigBee Networking 

First, in practical water pipeline monitoring settings, it is essential to deploy a multitude of terminal sensors 

along pipelines. Given the low probability of pipeline leakage occurrences, simultaneous operation of all sensors 

leads to a considerable waste of energy. Additionally, water supply pipeline leaks happen sporadically, 

necessitating real-time monitoring of pipeline systems. To mitigate energy consumption and enhance network 

longevity, we propose a leakage-triggered networking approach. The ZigBee networking method comprises 

initialization networking and triggered networking. The network's topological structure is a crucial foundation 

for ZigBee networking. Considering the structural characteristics and distribution of water supply pipelines, this 

study adopts a network topology. For initialization networking, the first step involves determining coordinator 

nodes, setting their signal channels and network ID numbers, thereby initializing the network. Subsequently, 

non-coordinator nodes are integrated into the network. Figure 3 illustrates how nodes join the network, 

emphasizing the need for balanced terminal node distribution among relay nodes (i.e., router nodes). To achieve 

this balance, the solution incorporates Received Signal Strength Indicator (RSSI) information into each 

Beacon_request frame when a terminal node sends a network join request. Routing nodes then offer joining 

services to terminal nodes based on RSSI values. For effective and reliable collection of leakage signals, 

reasonable threshold values for RSSI are crucial. If terminal node RSSI values fall below the threshold, routing 

nodes disregard their requests. Conversely, if RSSI values surpass the threshold, routing nodes record terminal 

node information, ensuring successful network integration. Once the network is initialized, this study introduces 

three types of control frames (join frame, active frame, and wave frame) to reduce network power consumption 
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and prolong its lifespan. These frames trigger network actions based on leakage detection results. Tables 1–3 

depict the structures of the join frame, active frame, and wave frame, highlighting key fields such as 

Sou_address, Des_address, PANID, and specific result indicators. 

 
Figure 3: Flowchart of the nodes joining the network 

 

Table 1: Join Frame 

Field Name PANID Des_address Sou_address Join_result Channel 

Length 16 bits 16 bites 16 bits 1 bit 32 bits 

Instruction Network Destination Source Results Channel 

 

Table 2: Active Frame 

Field Name PAN ID Sou_address Act_address 

Length 16 bits 16 bits 16 bits 

Instructions Network ID Source Active Node 

 

Figure 4 illustrates the operational sequence of the networking flow in response to leakage triggers. The terminal 

nodes initiate the process by dispatching Join frames to the routing nodes, leading to the compilation of a 

comprehensive list of terminal nodes. Once the routing-terminal relationships are established, the routing nodes 

subsequently transmit Active frames to the terminal nodes. Upon reception of Active frames, the terminal nodes 

assess whether they serve as destination nodes. If a node identifies itself as a destination, it activates and 

proceeds with data sampling. Conversely, if a node is not a designated destination, it enters a sleep monitoring 

state, awaiting the next Active frame. When a node in the active state detects a received signal as a leakage 

signal, the routing node transmits the predetermined leakage-triggered address to the nodes listed in the terminal 

nodes compilation. All nodes receiving this address then activate themselves, initiating signal sampling and 
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transmission. This methodology empowers routing nodes to govern the operational status of terminal nodes. 

Upon completion of the networking process, data transmission is executed using the ZigBee routing protocol. 

 
Figure 4: Flowchart of the ZigBee network leakage trigged networking 

 

Leakage Detection by Using Machine Learning and Time-Frequency Features 

Time-Frequency Analysis of the Acoustic Leakage Signal 

Spectrum Density Feature 

Many studies have indicated that the components of the spectra of leakage signals are chiefly concentrated 

within specific bands. As a result, the differences between signal spectra can be employed as pipeline leakage 

identification characteristics. To extract the differences of the signal spectral density,we used empirical mode 

decomposition (EMD) to perform a time-frequency analysis of pipeline signals and proposed a frequency 

domain feature for detection. EMD can selectively decompose the signal as the sum of a finite number of 

intrinsic mode functions (IMFs) enabling multiple IMFs to be used in the multiscale analysis of the spectrum 

density of leakage signals. An analytic function z(t) can be expressed as: 

    (1) 

where  x ˆ (t) is the Hilbert transform of a signal x(t) and F(t) is given by: 

       (2) 

Finding the derivative of the phase function with respect to time enables the signal analysis instantaneous 

frequency function to be determined as: 

      (3) 

The definition of the instantaneous frequency shows that although the instantaneous frequency may take the 

form of a meaningless negative frequency under certain situations, if the instantaneous frequency is positive 
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throughout a certain period of time, then the x(t) can be termed the IMF. Accordingly, an IMF must satisfy the 

following two conditions: 

The number of extreme points is Ne (including the minimum and maximum values), which is the same as or no 

more than one from the number of zero crossing points Ns, 

     (4) 

At an arbitrary time ti within the time period, the mean of the upper envelope determined by the local maximum 

and the lower envelope determined by the local minimum is zero, 

    (5) 

Generally, a signal can include multiple IMFs. The EMD method can be used to extract the IMFs from a signal. 

To derive the spectrum density features of a leakage signal, we used the EMD method to process the signal, 

which will yield the IMFs of that signal. All the extreme points of the original signal x(t) are connected with a 

cubic spline curve, yielding the upper and lower envelopes of x(t), 

      (6) 

We now check whether h1(t) satisfies the two conditions of the IMF. If it does not satisfy them, repeat (6) until 

the IMF conditions are satisfied. h1(t) at this time is expressed as c1(t), where c1(t) is the first IMF of the signal 

x(t), 

       (7) 

Next, c1(t) is subtracted from the original signal x(t) to obtain the new signal r1(t), 

which causes the signal to be contained between the two envelopes. We assumed that the function formed by 

means of the two envelopes is m(t). Subtracting m(t) from the original signal x(t), 

Next, c1(t) is subtracted from the original signal x(t) to obtain the new signal r1(t), 

      (8) 

Next, c1(t) is subtracted from the original signal x(t) to obtain the new signal r1(t), Repeating (6) until the IMF 

conditions are satisfied, the first IMF of r1(t) is obtained, which is the second IMF of x(t) and is denoted as 

c2(t). Continuing in the same manner, we can progressively derive the mth IMF cm(t) of the signal x(t) and the 

remainder rm(t). 

Using the foregoing steps, the original signal x(t) can be decomposed into the sum of IMFs and a remainder, 

      (9) 

In general, the IMF condition (2) is difficult to satisfy; thus, a stopping criterion is generally established. When 

the stopping criterion has been satisfied, Condition (2) can be considered to have been met. For this reason, we 

set the standard deviation between two consecutive processing results as Sd, 

     (10) 

where N is the observed signal length and hk−1(n) and hk(n) are two consecutive processing results in the process 

of the IMF derivative. When the standard deviation Sd reaches the preset threshold value, we can assume that 

Condition (2) has been satisfied. It has been indicated in that the threshold value of the standard deviation Sd is 

typically taken as 0.2–0.3. 

After the IMFs of a signal have been obtained, we can further obtain the discrete Fourier transform Ci(k) of the 

IMF components ci(n) resulting from EMD decomposition, 
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     (11) 

Deriving the modulus square of Ci(k) yields the IMF power spectrum of the signal, 

       (12) 

We then obtain the mean of Equation (12), 

       (13) 

This paper uses the mean value of the IMF power spectrum as the frequency domain feature of the leakage 

signal. 

Figure 5 shows the power spectra of the signals from a pipeline with and without leakage. The results indicate 

that the frequencies of the acoustic signals leakage were chiefly concentrated near 1.6 kHz, which is consistent 

with previous research. Figure 6 is the spectra of the first four groups of IMF components obtained by EMD of 

the pipeline leakage signal and the pipeline non-leakage signal. In this experiment, the threshold value of the 

standard Sd was set as 0.3. Comparing the IMF of each layer of the leakage signal and the non-leakage signal, it 

can be seen that the main spectrum of the signal was in the first layer IMF. The spectrum of the leakage signal 

mainly distributed between 1000 Hz and 2000 Hz. The non-leakage signal spectrum was more random and 

mostly distributed over the entire band. 

Signal Complexity Feature 

Because pipeline leakage is a localized and low probability event, there should be differences in the time 

domain composition of leakage signals and non-leakage signals, and the composition of leakage signals should 

be more complex. Accordingly, the differences of signal composition in time domain can be used to identify 

leakage signal. The approximate entropy (ApEn) is the conditional probability when similarity is maintained 

after the dimensions of a similarity vector are increased from m to m + 1 and is the probability of the new mode 

when the number of dimensions changes. The greater the probability of the new mode is, the more complex the 

signal and the greater the corresponding ApEn. Therefore, we used the average ApEn as a time domain feature 

to quantify signal complexity. 

 
Figure 5: Power spectra of signals from a pipeline (a) Normal signal power spectrum (b) Leakage signal power 

spectrum 
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Figure 6: The first four intrinsic mode function (IMF) spectra of the pipeline leakage and signal.(a) Leakage 

signal.(b) Non-leakage signal 

 

For a sequence u(1), u(2), · · · , u(N), two sequences with length m can be used to construct as x(i) = [u(i), u(i + 

1), · · · , u(i + m − 1)] and x(j) = [u(j), u(j + 1), · · · , u(j + m − 1)], where i, j ≤ N − M+ 1. We then calculate the 

distance between x(i) and x(j), 

 (14) 

Assuming a threshold value r, we determine the number of d[x(i), x(j)] ≤ r (which is set as L) for every i < N − 

m + 1 and calculate the ratio of L and the number of vectors, 

      (15) 

For all i values, we derive the mean fm(r) of ln Cm
i (r), 

      (16) 

Increasing m by one, we repeat Steps (14)–(16) to obtain fm+1(r), and in accordance with fm+1(r) and fm(r), we 

can obtain the ApEn value as: 

     (17) 

The results showed that the ApEn was a dimensionless scalar quantity, and its value was related to m and r. To 

ensure that the ApEn had reasonable statistical characteristics, based on experience, m = 2 is usually employed, 

and r was set as 0.1–0.3-times the standard deviation (SD) of the sequence [49]. Figure 7 shows the ApEn of 

signals before and after leakage for different threshold values. In the experiment, 50 datasets were obtained in 

each of the two situations, the length of each dataset being 5000, with r = 0.3SD, r = 0.2SD, r = 0.1SD, 

respectively. The results in Figure 7 show that when r = 0.2SD, seven leakage signals were discriminated as 

normal signals and 10 normal signals were discriminated as leakage signals, with an accuracy of 83%; while in 

the other two cases, the accuracies were 81% and 80%, respectively. Therefore, it was appropriate to set the 

threshold value as r = 0.2SD. The above analysis indicates that the complexity of the leakage signal should be 

higher than that of the non-leakage signal, and the complexity can therefore be used to identify leakage. 
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Figure 7: ApEn of signals for different threshold values (a) r=0,3SD, (b) r=0.2SD, (c) r=0.1SD 

 

Signal Principal Component Feature 

PCA is a classical feature extraction method that involves the reduction of dimensionality and converts variables 

into a smaller number of aggregate variables (the principal components). Each principal component is a linear 

combination of the original variables, and the individual principal components are not mutually correlated. The 

principal components can convey a vast majority of the information contained in the original variables, and this 

information is not mutually. overlapping. In this paper, we used PCA to analyze the differences between 

pipeline leakage signals and non-leakage signals. 

Assuming that n samples are obtained each time from pipeline signals, this can be expressed as xi = (x1i , x2i , · 

· · , xni)T. If we have m sets of data x1, x2, · · · , xm, we can construct an n × m matrix X = [x1x2 · · · xm] as:  

    (18) 

We used the signal principal components to construct a n × l (0 < l ≤ m) component signal matrix Y = [y1y2 · · · 

yl ], and then constructed a matrix G based on the internal product gji = [yj, xi ] of the principal component 

signal matrix and original signal matrix, 

      (19) 

We further chose gj = [gj1gj2 · · · gjm], 0 < j ≤ l as the feature for the identification of leakage. 

Machine Learning Inspired Water Pipeline Leakage Detection 

Although the features in Section 4.1 have different characteristics in connection with the identification of 

pipeline leakage, the use of a single feature for identification is inefficient. For example, if the spectra of leakage 

and non-leakage signals are significantly different, the mean spectra of the IMFs will have excellent 

identification ability. However, when there is interference in the same band, this method tends to yield many 

false results. In addition, when the leakage from a pipeline is relatively small, the mean ApEn will have a poor 

ability to differentiate between leakage and non-leakage signals. 

To increase the accuracy of leakage detection, this paper took advantage of the time-frequency features to 

construct identification feature sets and used SVM to classify the signal features and thereby determine pipeline 

leakage. The SVM is an advantageous means of solving small sample problems, nonlinear problems, and 

problems involving high-dimensional data, e.g., data forecasting, data fitting, and model identification. Assume 

that (xi , yi) constitutes a training set data sample, where 1 ≤ i ≤ N, xi ∈ Rd for each sample, d is the 

dimensionality of the input space, and yi ∈ {−1, 1} is the classification label. The training set can be linearly 

delimited by a hyper-plane that can be expressed as w· x+ b = 0, where w and b are locations that determine the 

hyper plane. A sample satisfying the following conditions is termed a support vector: 

       (20) 

fact, the optimal classification of a sample is the solution for the optimal classification hyper plane, 
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    (21) 

where w is the coefficient vector of the classification hyper-plane in the feature space, b is the threshold value of 

the classification plane, xi(xi ≥ 0) is a relaxation factor included to account for the classification error, and C is a 

penalty factor for the misclassified sample. The optimal classification hyper-plane obtained can be expressed as: 

       (22) 

In nonlinear separable situations, a projection function (termed the kernel function) is used to project an input 

space Rd with low dimensionality into a feature space H with high dimensionality, which converts the training 

sample from a linear inseparable problem with low dimensionality into a higher dimensional linear separable 

problem. At this time, the optimized dual problem is: 

    (23) 

where K(xi , xj) = F(xi) · F(xj) is the kernel function. Equation (23) shows that an SVM model with a suitable 

kernel function K(·) must be chosen in the case of a nonlinear separable problem. The decision function 

corresponding to the use of Equation (23) is 

     (24) 

To improve the accuracy of leakage detection, we must use the training sample and testing sample to optimize 

the SVM, and the optimization processes are shown in Figure 8. Due to the effects of environmental factors on 

underground water pipelines, it is necessary to perform signal sampling during different times and at different 

places to compile sample sets including leakage signals and non-leakage signals. At first, the feature set of the 

training sample is used to perform SVM training, which creates a preliminary identification model. The feature 

set of the testing sample is then used to test the trained SVM model. The SVM model is optimized further based 

on testing results until the accuracy of the test output meets the requirements, which results in an SVM pipeline 

leakage identification model. 

 
Figure 8: Schematic diagram of the SVM identification model training and optiimization 

 

The theoretical analysis underlying Equations (23) and (24) indicates that the main factors that affect the SVM 

model’s performance include the kernel function and the penalty factor C. According to the characteristics and 

ability of the SVM, we took the radial basis kernel as the kernel function in this paper. The radial basis kernel 

function is expressed as: 

     (25) 

In this case, the SVM model’s performance is determined by the parameters C and g. To achieve accurate 

identification results, the optimization process shown in Figure 8 must use the training sample and testing 
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sample to optimize (C, g). Research has shown that the exponential sequences obtained using C and g can 

achieve good results. In this paper, we obtained the following parameter values based on the parameter value 

range: C = 2x(x ∈ [−5, 15]) and g = 2y(y ∈ [−15, 5]). Based on the cross-validation grid-search method, we then 

optimized the SVM parameters. We used the training sample and testing sample to perform testing of an SVM 

model with different 2x and 2y combinations and thus obtained the testing accuracy. The final step was to select 

the C and g values that yielded the optimal cross-validation accuracy, which were selected for identification. 

 

SIMULATION RESULTS 

Leakage Triggered Networking 

In this section, OPNET Modeler14.5 was used to simulate the proposed leakage triggered networking method. 

The simulation process requires the design and configuration of three different layers. The node layer defines 

the node behavior and controls the data flow between the different modules in one node. The process layer uses 

the protocol to perform state conversion for the state machines. The network layer establishes the network  

opological structure and network layers. 

Generally, a ZigBee node model includes an application layer, network layer, MAC layer, and a wireless 

transceiver. To compile the network power consumption, we added an energy calculation module to the node 

model. The energy calculation module kept track of the transceiver’s standby, receiving, and transmitting energy 

consumption via monitoring of the transceiver status. Since the code for the application layer module and 

network layer module in OPNET was not available, we redesigned the application layer and network layer 

modules. During the simulation, the coordinator nodes, routing nodes, and terminal nodes had the same node 

model. The application layer included the source module and sink module. The source module employed the 

simple_source model, which was a data packet generation module and was responsible for generating data 

packets with the specified packet size in accordance with the specified packet interval. The sink module was a 

data packet destruction module and was responsible for destroying data packets that had been transmitted to the 

destination node, which released internal storage dynamically assigned by the program. The network layer 

consisted of the network_layer module and mainly served to drive the completion of networking procedures by 

the MAC module, complete initialization networking and leakage triggered networking, and perform data packet 

routing in accordance with the AODVjrrouting protocol. The MAC layer employed an 802_15_4_mac module 

and had a CSMA/CA competitive algorithm. The 802_15_4_mac module performed some networking, multiple 

access, and sleep management functions via an added sleep state machine. The physical layer employed a 

wireless_tx/wireless_rx module as a wireless transceiver. 

The water supply pipeline network shown in Figure 9 was designed for the simulation. The area was 1500 m × 

1500 m and contained a total of 644 ZigBee nodes, which included six coordinator nodes and 638 routing and 

terminal nodes. The coordinator nodes were considered as sink nodes. The distance between adjacent nodes was 

10 m; the distance between routing nodes was 50 m; and four terminal nodes were located between each pair of 

routing nodes. Each of the routing and terminal nodes was also a sensor. The terminal nodes completed the data 

collection and the detection of the water leakage signal and sent the data to the routing nodes. Then, the routing 

nodes transmitted the information collected by themselves and the terminal nodes to the sink nodes through 

multi-hop routing. Finally, the sink nodes sent the information to the background control center to realize the 

monitoring of the entire network. An RxGroup Configmo module was used to configure the nodes’single-hop 

link distance in the simulation scenario, and channel fading employed a free space loss model. The simulation 

parameters for each layer are shown in Table 4. 

The simulation time was 1200 s. First, leakage signal information functions were established in the MAC layer, 

and a leakage triggered networking experiment was performed via the establishment of leakage point 

coordinates, signal attenuation coefficients, and the leakage signal detection threshold using the functions. The 

leakage coordinate was (319, 753), which indicated that the leakage point was located between Nodes 10 and 

11, as shown in Figure 10. In the simulation, Node 3 was a coordinator node, Nodes 8, 13, and 18 were routing 

nodes, and the remaining nodes were terminal nodes. According to the simulation settings, leakage occurred at 

700–720 s, and the signal attenuation coefficient and leakage signal detection threshold settings ensured that 

Routing Nodes 8 and 13 could receive the leakage signal. We also monitored the active and sleep status of the 

MAC layer to track the nodes’ networking status. 
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Table 4: Simulation Parameter settings 

Application Layer Parameters 

Packet Size Constant(512) 

Packet Interarrival Time  Exponential (5) 

Start Time 120s 

Stop Time Infinity 

MAC Layer Parameters 

ACK Wait Duration 0.05 s 

Minimum Backoff Exponent 3 

Maximum Number of Backoffs 4 

Channel Sensing Duration 0.5 

Physical Layer Parameters 

Transmission Bands 2450 MHz Band 

Data Rate 240 kbps 

Packet Reception Power Threshold -85 dBm 

Transmission Power  1 mW 

Receive Power 0.4 mW 

Idle Power 0.1 mW 

 

 
Figure 10: Arrangement of wireless sensor nodes in the vicinity of leakage point. 

Figure 11 shows the working statuses during the 0–1200 s period. The coordinator and routing nodes were 

consistently in the working state, and the terminal nodes within the routing node network were sequentially 

working and sleeping. Leakage occurred when the simulation time reached 700 s, and all of the terminal nodes 

within the network formed by Routing Nodes 8 and 13 entered the working state at that time. Leakage ceased 

when the simulation time reached 720 s, and the terminal nodes within the network formed by Routing Nodes 8 

and 13 resumed the normal working status. The routing nodes on both sides of the leakage point could detect the 

leakage signal and performed networking when the leakage occurred, whereas the other routing nodes remained 

in a normal working state. Simulation results indicated that the proposed solution achieved leakage triggered 

networking by the sensor nodes on both sides of a leakage point, which could further provide data to determine 

the location of the leakage point. 

 
Figure 11: Node stauts (a) Coordinator and routing nodes. (b) Networking nodes. (c) Nodes in the normal 

working state 
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Figure 12 shows a comparison of the networking time between the proposed networking solution and the 

ZigBee 2007 networking solution. The simulation results indicated that the networking time of the proposed 

solution was slightly greater than that of the ZigBee 2007 solution because of the addition of the RSSI threshold 

value. However, the networking time of all the nodes increased only by approximately 1.39%. Therefore, the 

proposed solution could be used in a large scale networking environment. 

 
Figure 12: Comparisons of the networking time and propertions of networking nodes for the proposed solution 

and the ZigBee 2007 solution (a) Networking time (b) Proportion of networking nodes 

 

Figure 13 shows a comparison of the power and energy consumptions of the proposed solution and the ZigBee 

2007 solution. Simulation results clearly demonstrated that the proposed solution could reduce the network 

power and energy consumption and increase the network lifetime through controlling of the polling work of the 

terminal nodes within their networks. 

Figure 14 shows the percentage of terminal nodes carried by all the routing nodes when the transmission power 

of the sensor nodes was 1 mW and the RSSI threshold was −68 dBm. In accordance with the channel loss 

model, the signal transmission distance controlled by the threshold value was approximately 25 m. Because the 

nodes were spaced at intervals of 10 m in the simulation, four terminal nodes were carried by each routing node. 

The results shown in Figure 14 indicate that the proposed solution can ensure the number of terminal nodes 

carried by the routing nodes was more uniform than that in the original solution and could thereby ensure more 

stable network coverage. 

 
Figure 13: Comparisons of the networking power and energy consumption for the proposed solution and the 

ZigBee 2007 solution (a)Power (b)Energy 
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Figure 14: Ratio of terminal nodes carried by routing nodes for the project solution and the ZigBee 2007 

solution 

 

Leakage Identification 

The experiment was performed along an exposed aluminum-plastic composite pipe, with a diameter of 27 mm. 

Moreover, the water-tap was used as the leakage sound source, then the flow rate was adjusted, and the sensor 

was placed at a distance of 20 cm away from the water-tap. One hundred datasets of leakage signals and non-

leakage signals were sampled respectively. Each dataset had a length of 5000, and the data were used to train 

and optimize the SVM model. In addition, 100 datasets of leakage and non-leakage signals were sampled during 

the early quiet morning hours, respectively. Therefore, the simulated noise was employed to verify the 

effectiveness of the proposed leakage detection. 

At first, 50 datasets were extracted from each of the leakage and non-leakage signals and used to create a 

training set. The remaining samples were then used to create a testing set. The SVM parameters (C, g) were set 

to an integer power of two; the range of C was set as C ∈ [2−5, 215]; and the range of g was set as g ∈ [2−15, 

25]. The grid-search method was used, and 21 × 21 = 441 for (C, g) parameter combinations were used to 

perform the model training. The detection accuracy is shown in Figure 15. The results indicated that the highest 

identification accuracy achieved by the proposed algorithm was 98%. In addition, when C ≥ 22, g ≤ 20, and 21 

≤ C × g ≤ 27, the SVM model based on the radial basis kernel provided good pipeline leakage signal 

identification performance. 

 
Figure 15: Identification accuracy under different(C,y) parameter combinations 
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To verify the effectiveness of the proposed leakage detection, the experiment was performed in which 100 

datasets of leakage signals and non-leakage signals were sampled, respectively. Figure 16 shows the detection 

results for (C, g) = (29, 2−4) parameter combinations, where the leakage label was 2, and the non-leakage label 

was 1. The identification results showed that the proposed method only determined two leakage signals to be 

non-leakage signals and made accurate determinations in all other cases, indicating that the classification 

accuracy achieved by the proposed algorithm was 98%. Table 5 shows the results obtained by using the 

proposed algorithm to perform leakage identification after artificial Gaussian noise and impulsive noise were 

added to leakage signals obtained during a quiet period of time. The results indicated that the proposed water 

supply pipeline leakage detection method based on the time-frequency features of the signal and SVM could 

effectively detect pipeline leakage. 

 
Figure 16: Pipeline leakage and non leakage detection results 

 

Table 5: Leakage signal identification role in an enviroment containing Gaussian noise and impular noise 

(c,g)\SNR(DB) -12 -9 -6 -3 0 3 6 9 12 

Gaussian Noise 

(29,2-4) 34 42 60 83 85 88 91 92 96 

(210,2-5) 34 42 60 82 85 87 91 92 96 

(211,2-6) 34 42 60 82 85 87 89 93 96 

(212,2-7) 37 42 60 82 84 87 88 93 96 

(213,2-8) 34 42 60 82 85 87 91 93 96 

(214,2-9) 34 42 59 82 85 87 91 93 96 

(215,2-10) 34 42 59 82 85 87 91 83 96 

Impulsive Noise 

(29,2-4) 31 32 56 84 85 88 90 94 96 

(210,2-5) 31 32 54 82 84 87 89 93 95 

(211,2-6) 31 32 59 81 84 87 90 93 95 

(212,2-7) 31 32 56 81 85 87 90 93 95 

(213,2-8) 31 32 55 81 84 87 90 93 95 

(214,2-9) 31 32 55 81 84 87 91 93 95 

(215,2-10) 31 32 55 80 84 87 91 93 95 

 

CONCLUSION 

In this paper, an experimental water pipeline leakage detection system based on machine learning and wireless 

sensors networks was presented. The system employed ZigBee and 4G to acquire and transmitted signals. In 

addition, a leakage triggered networking method was further proposed to reduce the WSN energy consumption 

effectively and prolong the system life. To improve the accuracy of water pipeline leakage detection, the 

proposed system made better use of EMD, ApEn, and PCA of the leak signal and SVM to identify the leakage 

signal intelligently. Simulation analysis and experimental results indicated that the proposed leakage 

identification method could effectively identify the water pipeline leakage. 
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ABBREVIATION 

The following abbreviations are used in this paper: 

WSNs   Wireless sensor networks 

SVM   Support vector machine 

LPCC    Linear predictive coding coefficient 

HMM   Hidden Markov model 

PCA   Principal component analysis 

LOS   Line-of-sight 

NLOS   Non-line-of-sight 

RSSI    Received signal strength indicator 

EMD   Empirical mode decomposition 

IMFs   Intrinsic mode functions 

ApEn   Approximate entropy 

SD   Standard deviation 
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