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ABSTRACT 

In this paper a novel Adaptive Hybrid Optimization technique based on Evolutionary and Swarm Intelligence Meta-

heuristic methods is formulated and tested in solving complex optimization problems. The hybrid utilizes some of the 

mostly studied and applied metaheuristic methods in the hybridization and adaptation process with the aim of 

suppressing their individual weaknesses while taking advantages of the associated individual strengths. The proposed 

approach combines the strengths of Differential Evolution (DE) and Bacterial Foraging Optimization Algorithms 

(BFOA) in the hybridization while their weaknesses are mitigated by the introduction of important Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) characteristics in the algorithm formulation. The developed algorithm is 

tested on the high dimensional Standard Benchmark Functions (F1-F10) as well as two constrained engineering 

optimization problems (Pressure vessel design and tension/compression spring design). The obtained results are 

compared with those obtained by other researchers using other well-known metaheuristic optimization methods. When 

subjected to solving the standard benchmark functions the developed algorithm outperformed the rest of the 

optimization methods in eight out of the ten test functions. In addition, the developed algorithm produced superior 

results for the two constrained engineering optimization problems when compared to other meta-heuristic methods. 
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INTRODUCTION 

Different methods and techniques have been formulated to solve various optimization problems. These methods can 

broadly be classified into for main groups namely: deterministic (mathematic/exact) methods, heuristic (approximate) 

methods, metaheuristic methods and hybrid methods.Deterministic methods include the unconstrained methods which 

convert constrained problems into unconstrained form. These methods include all mathematical models which are 

focused on optimization processes with objective function minimization/maximization subject to sets of constraints [1]. 

They mainly include the classical programming approaches (e.g. Linear Programming (LP), Dynamic Programming 

(DP), Quadratic Programming, Non-Linear Programming (NLP) etc.) and decomposition techniques (e.g. Benders 

Decomposition (BD), Hierarchical Decomposition (HD), Branch & Bound Algorithm (BBA) among others). When 

solving complex optimization problems which are often nonlinear and non-convex, the computational effort in these 

deterministic methods is usually huge. In such scenarios, many of these methods require the relaxation of the binary to 

continuous variables to lower computation burden, however this may lead to solutions far from the optimum [2]. In 

addition, due to intrinsic limitations of the searching process there is a possibility that the obtained optimal solution 

corresponds to a local optimum.  

Heuristic methods are inventive techniques based on users’ experience and hence their computational performance is 

usually better than that of the mathematical methods. They can be interactive or non-interactive. Interactive heuristic 

methods interact with the planner in their step-by-step generation, evaluation, and selection of expansion options, while 

non-interactive do not [2]. Most combinatorial problems cannot be solved to optimality in reasonable computation 

times, due to their dimensionality or other characteristics. Being exact in most practical optimization problems may be 

meaningless, since one is dealing with not very precise data in addition to simple simplifications of reality. However, 

the integrity of the input data, technique used and the solution should be within the acceptable limits. Though heuristic 

methods can give good feasible solutions with reasonable computation efforts, they are however problem-dependent 
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and require parameter tuning. Thus, they do not guarantee global solution attainment. Such methods include: Sensitivity 

Analysis, Depth First Search (DeFS), Best First Search (BeFS), Scenario Analysis etc. 

Metaheuristic methods combine the attributes of both deterministic and approximate methods. Unlike heuristic 

methods, they are not problem-dependent however some intrinsic parameter fine tuning is necessary in their adaptation 

to specific problems. In these approaches, the constraints and objective functions in the problem formulation are not 

differentiated since the approaches need no prior knowledge of the problem. The fact that these methods are not 

gradient-based (derivative-free) helps them avoid premature convergence as a result of being trapped in local optima. 

Their independence from the starting point (initial solution) eliminates the necessity for convexity in solving 

optimization problems. Available metaheuristic methods can be classified into three groups namely: Evolutionary 

Algorithm (EA) approaches (e.g. Evolutionary Programming (EP), Genetic Algorithm (GA), Evolution Strategies (ES), 

Differential Evolution (DE), Artificial Immune Systems (AIS) etc.); Swarm Intelligence Approaches (e.g. Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), Bat Algorithm (BA), Bee Colony Optimization (BCO), 

Artificial Bee Colony (ABC), Bacterial Foraging Optimization Algorithm (BFOA) etc.)  and Trajectory Metaheuristic 

Approaches (e.g. Hill Climbing (HC), Simulated Annealing (SA), Tabu Search (TS), Greedy Randomized Adaptive 

Search Procedures (GRASP), Teacher Learning Algorithm (TLA), Biogeography-Based Optimization (BBO) etc. 

In the recent past, researchers in this area are hybridizing various techniques to come up with powerful but less complex 

methods which can be used to solve the different optimization problems. These hybrids techniques are formed by 

combining two or more of the above reviewed techniques. Hybrids can be between/among methods in the same 

category of in different categories [2]. In most cases these researchers combine a deterministic approach with a heuristic 

or meta-heuristic approach. Recently, there is increasing hybridization of heuristic and meta-heuristic methods. The 

reason for this increased use of hybrids is because they exalt the strengths and improve the weaknesses of the methods 

concerned.This paper presents a novel metaheuristic-based adaptive hybrid approach developed by combining the 

attributes of evolutionary techniques with those of swarm intelligence techniques.  Table-1 gives the attribute(s) of 

interest for each optimization technique used in the hybridization process and the reason behind its selection.  

Table -1 Details on selection of Optimization Techniques 

Optimization 

Technique 

Attribute of Interest Reason for Selection 

DE  Real-valued continuous space application 

 Differential recombination 

 Ease of application to a wide variety of real valued 

problems with multi-modal, multi-dimensional spaces 

[3]. 

 Gives better results in comparison to other EA in most 

cases [4]. 

BFOA  Easily adaptable 

 Relatively new with increasing application 

 Powerful among swarm intelligence 

techniques 

 Its formulation accommodates best attributes from other 

techniques easily (ease of improvement) [5].  

 Often outperforms other swarm intelligence techniques 

[6]. 

GA  Cross over  

 Mutation 

 These properties of the GA bring diversity to the 

candidate solutions thus discouraging premature 

convergence [7]. 

 Can provide a good guidance for PSO particles thus 

improving its efficiency [8]. 

PSO  Global best  

 Individual best 

 This attribute can be used to bring the useful 

social/historical information of particle positions leading 

to faster convergence [9]. 

Evolutionary techniques are based on the powerful principle of evolution, that is, survival of the fittest. They explore 

biological evolution mechanisms such as reproduction, mutation, recombination (crossover) and selection [10-12]. On 

the other hand, Swarm Intelligence (SI) approaches exhibit the swarm intelligence phenomenon where the collective 

behavior of agents interacting locally within their environment in a system causes coherent functional global patterns to 

emerge [2]. The evolutionary techniques utilized in this hybridization are Genetic Algorithm and Differential Evolution 

while the swarm intelligence techniques are Particle Swarm Optimization and Bacterial Foraging Optimization 

Algorithm. The hybridization and adaptation process aims at maximizing on individual benefits while avoiding the 

associated weaknesses. Detailed steps in the formulation of each variant/type of the four metaheuristic techniques used 

in this hybridization are given in [5-8].  

 

PROPOSED ALGORITHM FORMULATION 

As mentioned in the introduction, the metaheuristic-based adaptive hybrid algorithm proposed in this paper combines 

both genetic and swarm intelligence characteristics. The developed algorithm is majorly based on a hybrid of 

Differential Evolution (DE) and Bacterial Foraging Optimization Algorithms (BFOA), however, various steps in the 

developed hybrid are adapted through selected Genetically Improved Particle Swarm Optimization (GIPSO) attributes 
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so as to be able to mitigate some of the foreseeable weakness in the optimization process. The algorithm is thus 

abbreviated ADEBFOA (Adaptive Differential Evolution - Bacteria Foraging hybrid optimization algorithm). 
 

Proposed Hybridization and Adaptation Steps 

1. The algorithm starts by initializing all the parameters of the techniques involved. These include: 

 Population size (number of bacteria/particles), 𝑁 

 Chemotactic steps, 𝑁𝑐  

 Swim length, 𝑁𝑠 

 Reproduction steps, 𝐾 

 Elimination/Dispersal steps, 𝐿 

 Step-size limits, 𝐶𝑚𝑖𝑛 &𝐶𝑚𝑎𝑥  

 Mutation probability, 𝑃𝑚𝑢𝑡  

2. The N population is randomly initialized taking into account all relevant constraints for which the already 

formulated objective function is being optimized (minimized/maximized) subject to. 

3. The fitness of each bacterium/particle is evaluated based on the optimization problem objective function. The value 

of each bacterium P, becomes its personal best denoted,  𝑃𝑏𝑒𝑠𝑡 . The bacterium with the best fitness in this step is 

denoted as global best denoted,  𝐺𝑏𝑒𝑠𝑡 . 

𝑃𝑏𝑒𝑠𝑡
𝑖  =  𝑃𝑖 ,         ∀𝑖           (1) 

𝐺𝑏𝑒𝑠𝑡 = 𝑃𝑏𝑒𝑠𝑡
𝑖  𝑖𝑓 𝑓 𝑃𝑏𝑒𝑠𝑡

𝑖  = min{𝑓 𝑃𝑖 },   𝑖 ∈ 𝑁       (2)  

4. The iterations are initialized in this stage starting with Elimination/dispersal loop; 

𝑙 = 1, 𝑙 ∈ 𝐿            (3) 

5. Start reproduction loop; 

𝑘 = 1, 𝑘 ∈ 𝐾                           (4) 

6. Start chemotaxis loop; 

𝑗 = 1, 𝑘 ∈ 𝑁𝑐                   (5) 

(i) Unlike in normal BFOA, the chemotactic step here is performed employing an adapted step-size based on 

GIPSO attributes: 

(ii) The chemotactic movement for a classical BFOA is represented in (6) and (7). 

𝑃(𝑗+1,𝑘,𝑙)
𝑖 = 𝑃𝑗 ,𝑘,𝑙

𝑖 + 𝐶(𝑖)∅ 𝑖            (6) 

𝑃(𝑗+1,𝑘,𝑙)
𝑖 = 𝑃𝑗 ,𝑘,𝑙

𝑖 + 𝐶(𝑖)
∆(𝑖)

 ∆𝑇 𝑖 ∆(𝑖)
         (7) 

Where: 𝑃𝑗 ,𝑘,𝑙
𝑖  is the position of the 𝑖𝑡ℎ  bacterium in population N at the 𝑗𝑡ℎ  chemotactic step in Nc steps, 𝑘𝑡ℎ  

reproduction step in K steps and 𝑙𝑡ℎ  elimination in L elimination steps, 𝐶(𝑖) is the step size in the random 

direction and ∅ i  is a unit vector in the random direction. 

(iii) In a classical PSO algorithm, the velocity and position is updated based on equations (8) and (9) respectively. 

𝑉𝑗+1
𝑖 = 𝑤𝑉𝑗

𝑖 + 𝑐1𝑟 𝑃𝑏𝑒𝑠𝑡 𝑖 − 𝑆𝑗
𝑖 + 𝑐2𝑟 𝐺𝑏𝑒𝑠𝑡 − 𝑆𝑗

𝑖       (8) 

𝑆𝑗+1
𝑖 = 𝑆𝑗

𝑖 + 𝑉𝑗+1
𝑖               (9) 

Where: 𝑉𝑗
𝑖  and 𝑆𝑗

𝑖  are the velocity and position of the 𝑖𝑡ℎ  particle in the population, 𝑐1 and 𝑐2 are weight 

coefficients for each term respectively and r is a random integer between 0 and 1. 

(iv) These classical PSO equations can be used to improve the chemotactic movement for a classical BFOA by 

incorporating social behavior between the bacteria. In this case, the new BFOA movement is represented as in 

(10); 

𝑃(𝑗+1,𝑘,𝑙)
𝑖 = 𝑃𝑗 ,𝑘,𝑙

𝑖 + 𝐶 𝑖 { 𝑃𝑏𝑒𝑠𝑡 𝑖 − 𝑃𝑗 ,𝑘,𝑙
𝑖  +  𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑗 ,𝑘,𝑙

𝑖  }     (10) 

(v) This social cooperation ensures both exploration and exploitation in the search process. As a result, it enhances 

the probability of searching/moving towards better areas as good information is fully utilized.  

(vi) However, premature convergence may arise when  𝑃𝑏𝑒𝑠𝑡  and   𝐺𝑏𝑒𝑠𝑡  are located in the same local optimum. In 

addition, if   𝑃𝑏𝑒𝑠𝑡  and   𝐺𝑏𝑒𝑠𝑡  are located on opposite sides of 𝑃𝑗 ,𝑘,𝑙
𝑖  oscillations will result. To avoid these 

limitations the social cooperation analysis is modified using the attributes of Evolutionary Algorithms, i.e. 

cross-over and mutation. Arithmetic crossover commonly used in Differential Evolution is performed between 

the   𝑃𝑏𝑒𝑠𝑡  of each bacterium and the   𝐺𝑏𝑒𝑠𝑡  to generate a off-spring 𝑃𝑖𝑑𝑒𝑎𝑙 𝑖  which is mutated using a mutation 

probability, 𝑃𝑚𝑢𝑡  as shown in (11) and (12) respectively: 

𝑃𝑖𝑑𝑒𝑎𝑙
𝑖 =  

𝛼𝑃𝑏𝑒𝑠𝑡 𝑖 +  1 − 𝛼 𝐺𝑏𝑒𝑠𝑡 , if  𝑓(𝑃𝑏𝑒𝑠𝑡 𝑖) < 𝑓(𝑃𝑟 ,𝑑)

𝑃𝑟 ,𝑑                                                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (11) 

𝑃𝑖𝑑𝑒𝑎𝑙
𝑖 =  

𝑃𝑖𝑑𝑒𝑎𝑙
𝑖 + 𝑟∆𝑃𝑖𝑑𝑒𝑎𝑙

𝑖 ,       if  𝑟 < 𝑃𝑚
𝑃𝑖𝑑𝑒𝑎𝑙
𝑖                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (12) 

(vii) Using the 𝑃𝑖𝑑𝑒𝑎𝑙
𝑖  obtained in (12) the chemotactic movement given in (10) becomes: 

𝑃(𝑗+1,𝑘,𝑙)
𝑖 = 𝑃𝑗 ,𝑘,𝑙

𝑖 + 𝐶 𝑖 { 𝑃𝑖𝑑𝑒𝑎𝑙
𝑖 − 𝑃𝑗 ,𝑘,𝑙

𝑖         (13)   
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(viii) To balance between the exploration (diversification) and exploitation (intensification) ability of the DE-

ABFOA algorithm, the step size is varied to enhance exploration at earlier stages of chemo-taxis and 

exploitation at later stages. 

𝐶𝑗 ,𝑘,𝑙
𝑖 = 𝐶𝑚𝑎𝑥 −

(𝐶𝑚𝑎𝑥 −𝐶𝑚𝑖𝑛 )

𝑁𝑐
. 𝑗         (14) 

Equation (14) ensures larger step size at initial stages to guarantee the exploration ability while as the iteration 

move towards the stopping criterion smaller step sizes are adopted to intensify search around the promising 

areas and thus enhance algorithm’s convergence. 

(ix) The 𝑃𝑏𝑒𝑠𝑡  and 𝐺𝑏𝑒𝑠𝑡 for each bacterium and the population respectively are then updated using (15) and (16).  

𝑃𝑏𝑒𝑠𝑡  𝑗+1,𝑘,𝑙 
𝑖 =  

𝑃(𝑗+1,𝑘,𝑙)
𝑖 𝑖𝑓𝑓(𝑃 𝑗+1,𝑘,𝑙 

𝑖 ) < 𝑓(𝑃𝑏𝑒𝑠𝑡  𝑗 ,𝑘,𝑙 
𝑖 )

𝑃𝑏𝑒𝑠𝑡  𝑗 ,𝑘,𝑙 
𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (15)    

𝐺𝑏𝑒𝑠𝑡 (𝑗+1)
𝑖 =  

𝑃𝑏𝑒𝑠𝑡 (𝑗+1)
𝑖   𝑖𝑓  𝑓(𝑃𝑏𝑒𝑠𝑡  𝑗+1 

𝑖  ) < 𝑓(𝐺𝑏𝑒𝑠𝑡 (𝑗 )
𝑖 )

𝐺𝑏𝑒𝑠𝑡 (𝑗 )
𝑖                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (16) 

(x) Start Swim loop inside the chemotactic step for 𝑁𝑠 swims, 

𝑠 = 1,         𝑠 ∈ 𝑁𝑠           (17) 

a) Update the position of the bacteria using (13). 

b) Evaluate the fitness of the new bacteria population. 

c) Update bacterium’s𝑃𝑏𝑒𝑠𝑡  and 𝐺𝑏𝑒𝑠𝑡  using (18) & (19). 

𝑃𝑏𝑒𝑠𝑡  𝑠+1 
𝑖 =  

𝑃(s+1)
𝑖 𝑖𝑓𝑓(𝜃 𝑠+1 

𝑖 ) < 𝑓(𝑃𝑏𝑒𝑠𝑡  𝑠 
𝑖 )

𝑃𝑏𝑒𝑠𝑡  𝑠 
𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (18)                      

𝐺𝑏𝑒𝑠𝑡 (𝑠+1) =  
𝑃𝑏𝑒𝑠𝑡 (𝑠+1)
𝑖 𝑖𝑓𝑓(𝑃𝑏𝑒𝑠𝑡  𝑠+1 

𝑖  ) < 𝑓(𝐺𝑏𝑒𝑠𝑡 (𝑠))

𝐺𝑏𝑒𝑠𝑡 (𝑠)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (19) 

d) Increment 𝑠, if 𝑠 > 𝑁𝑠 go to step (x) else go to step (a) 

(xi) Increment 𝑗, if 𝑗 > 𝑁𝑐 go to step (7) else go to step (v) 

7. Perform population reproduction. The BFOA reproduction stage is also modified using GA and DE variants. 

Roulette wheel selection is used to get the parents from the current population. The probability of a bacterium to be 

chosen/selected as a parent is given by (20). 

𝑝(𝜃 𝑖) =
𝑓(𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 

𝑖 )

 𝑓(𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 
𝑖 )𝑁

𝑖=1

,    𝑖 ∈ 𝑁        (20) 

Where, 𝑓(𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 
𝑖 ) is the fitness of i

th
 individual in the population. 

Based on arithmetic crossover, the new population is obtained from the parents as given in (21) and (22).  

𝜃𝑁𝑐,𝑘+1,𝑙
𝑖(𝑛𝑒𝑤 1)

= λ𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 
𝑖(𝑜𝑙𝑑 1)

+ (1 − λ)𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 
𝑖(𝑜𝑙𝑑2)

       (21)           

𝜃𝑁𝑐,𝑘+1,𝑙
𝑖(𝑛𝑒𝑤 2)

= λ𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 
𝑖(𝑜𝑙𝑑 2)

+ (1 − λ)𝜃𝑏𝑒𝑠𝑡  𝑁𝑐 ,𝑘,𝑙 
𝑖(𝑜𝑙𝑑1)

       (22) 

Where, λ is a random integer between 0 & 1.  

8. Increment 𝑘, if 𝑘 > 𝐾 go to step (11) else go to step (6)                                                                                     

9. Perform Elimination/Dispersal stage: Half of the population (those with the worst fitness) are replaced with 

randomly assigned new positions in the solution space (similar to the population initialization in step 2) and the 

other bacteria with the better fitness values are maintained.  

10. Increment𝑙, if 𝑙 > 𝐿 go to step (11) else go to step (5). 

11. Output the positions and the fitness of all bacteria in the population. The bacteria with the latest 𝐺𝑏𝑒𝑠𝑡  becomes the 

optimal solution for the optimization problem. 

 

TEST RESULTS AND DISCUSSION 

The proposed meta-heuristic based adaptive hybrid algorithm was tested on various standard benchmark functions and 

constrained engineering test problems. The developed algorithm and the test problems were programmed on MATLAB 

2014 software. The obtained results were compared with those obtained by other researchers using available 

optimization techniques. The following parameters for the developed algorithm were used in the test analysis:  

Table -2 ADEBFOA Parameter Setting 

Parameter Symbol Value 

Population size 𝑁 100 

Chemotactic steps 𝑁𝑐  25 

Swim length 𝑁𝑠 4 

Reproduction steps 𝐾 4 

Elimination/Dispersal steps 𝐿 2 

Step-size limits 𝐶𝑚𝑖𝑛  , 𝐶𝑚𝑎𝑥  0.03, 0.07 

Mutation probability 𝑃𝑚𝑢𝑡  0.025 
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Standard Benchmark Functions 

These functions are often used by researchers to examine the performance of developed optimization algorithms/ 

techniques. In this analysis both high dimensional (F1-F10) and low dimensional (F11-F20) test functions were 

employed. Emphasizes was on the high dimensional continuous functions whose dimensionality makes them difficult to 

solve [13]. Detailed information on the standard benchmark functions applied here can be obtained in [13 & 14] where 

the dimensionality and modality (unimodal or multimodal) of individual functions are given. Metaheuristic based 

optimization techniques are usually stochastic in nature and thus their performance cannot be judged in a single run 

[13], as a result an average of 50 runs was used for the comparisons in this paper. The normalization procedure given in 

[15] is used to facilitate authentic comparison between results obtained from different algorithms. The procedure 

employs equation (23): 

𝑓𝑖,𝑛𝑜𝑟𝑚 = {1 −
 𝑓𝑖−𝑓𝑚𝑖𝑛  

 𝑓𝑚𝑎𝑥 −𝑓𝑚𝑖𝑛  
}           (23) 

Where 𝑓𝑖 ,𝑛𝑜𝑟𝑚  is the normalized value, 𝑓𝑖  is the fitness value, 𝑓𝑚𝑖𝑛  and 𝑓𝑚𝑎𝑥  are the minimum and maximum fitness 

values of solution i. Table-3 gives the comparison between results of the developed metaheuristic-based adaptive hybrid 

technique and those of other metaheuristic algorithms. 

Table -3 Statistical Result Comparison for Benchmark Functions 

Benchmark 

Function 

Result 

Feature 

PSO 

[16] 

BBO 

[16] 

DE 

[16] 

FFA 

[16] 

ADEBFOA 

[This 

Method] 

F1  

(Ackley) 

Best  0.8561 0.9125 0.1279 0.9878 0.99889 

Mean 0.7351 0.8924 0.0000 0.9733 0.98053 

Std dev. 0.7742 0.2514 0.9875 0.7126 0.54172 

F2  

(Griewank) 

Best  0.8016 0.9235 0.0001 0.9616 0.96640 

Mean 0.6842 0.9014 0.0000 0.9324 0.91320 

Std dev. 0.5585 0.5197 0.1013 0.9102 0.62140 

F3  

(Rosenbrock) 

Best  0.9954 0.9672 0.2541 0.9871 1.00000 

Mean 0.9512 0.9201 0.2435 0.9239 0.99255 

Std dev. 0.7649 0.5148 0.3512 0.6284 0.26356 

F4  

(Schwefel 

2.26) 

Best  0.9012 0.8921 0.6214 0.8743 0.93511 

Mean 0.8903 0.8315 0.4240 0.8272 0.87468 

Std dev. 0.5541 0.5148 0.8476 0.7513 0.59305 

F5  

(Schwefel 

2.22) 

Best  0.7549 0.7894 0.6259 0.9006 0.98624 

Mean 0.7158 0.7515 0.3682 0.8851 0.90264 

Std dev. 0.5541 0.8457 0.9845 0.6022 0.63540 

F6  

(Schwefel 

2.21) 

Best  0.8128 0.9459 0.7547 1.0000 0.98973 

Mean 0.7420 0.9025 0.6789 1.0000 0.96246 

Std dev. 0.3518 0.4875 0.8452 0.9638 0.47513 

F7         

(Schwefel 

1.2) 

Best  0.6742 0.9845 0.0000 0.9920 0.99072 

Mean 0.6315 0.9125 0.0000 0.9770 0.95284 

Std dev. 0.6842 0.5148 0.0000 0.7516 0.70122 

F8            

(Sphere) 

Best  0.7155 0.8965 0.6025 1.0000 1.00000 

Mean 0.6879 0.8823 0.5942 0.9703 0.98564 

Std dev. 0.6658 0.5129 0.9551 0.7125 0.81546 

F9    

(Rastrigin) 

Best  0.9727 0.9621 0.6745 0.9615 0.97762 

Mean 0.9523 0.9222 0.6424 0.9324 0.94285 

Std dev. 0.5135 0.6541 0.8845 0.9103 0.87583 

F10         

(Quatric) 

Best  0.9021 0.9925 0.8992 0.9872 0.99925 

Mean 0.8999 0.9401 0.8422 0.9238 0.92856 

Std dev. 0.3513 0.6846 0.6584 0.6284 0.78961 

From the results tabulated in Table II above, the developed metaheuristic-based adaptive hybrid algorithm (ADEBFOA) 

produced better results in eight (out of the ten standard benchmark functions) tests when compared to the other 

metaheuristic methods. Only in F6 (Schwefel 2.21) and F7 (Schwefel 1.2) functions where the developed algorithm was 

outperformed by the FireFly Algorithm (FFA). The results obtained in these two functions are however very close to 

those of FFA. The testing of the algorithm performance having shown promising results from the high dimensional 

standard benchmark functions was extended to selected representative constrained engineering optimization problems.  

 

Constrained Engineering Test Problems 
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Two constrained engineering problems have been used frequently in open literature to test effectiveness of developed 

optimization algorithms. These two problems are the pressure vessel design and spring design.  

 

Pressure Vessel Design Optimization 

Equation (24) gives the cost function of the pressure vessel design optimization problem as given in [17].  

𝐶𝑜𝑠𝑡 𝑥 = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
3 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3      (24) 

The equation is minimized subject to constraints (25-28): 

𝑓1 𝑥 = (−𝑥1 + 0.0193𝑥3) ≤ 0         (25) 

𝑓2 𝑥 = (−𝑥2 + 0.00954𝑥3) ≤ 0               (26) 

𝑓3 𝑥 = {−(𝜋𝑥3
2𝑥4

2) − (4

3
𝜋𝑥3)+1296000 }≤0            (27) 

𝑓4 𝑥 = (𝑥4 − 240) ≤ 0                 (28) 

The thickness of the cylinder and head, 𝑥1 and 𝑥2 respectively are discrete variables and can only take integer multiples 

of 0.0625 inches while the diameter and length of the vessel, 𝑥3 and 𝑥4 are continuous variables.  

The bounds for 𝑥1 and 𝑥2 are given by 𝑥1 ≥ 1 × 0.0625, 𝑥2 ≤ 99 × 0.0625 respectively. 

The problem is solved in two regions where:  

Region I:𝑥4 ≤ 200 

Region II:10 ≤ 𝑥3 ≤ 200 and 10 ≤ 𝑥4 ≤ 240 

Tables-4&5 give the statistical result comparison between the developed algorithm and other metaheuristic-based 

algorithms in regions I & II respectively. 

 

Table -4 Result Comparison for Pressure Vessel Design Optimization Problem - Region I 

Parameter Optimization Algorithm 

PSO 

[18] 

GA [19] ACO [20] ES [21] ADEBFOA 

[This Method] 

Cost(x) 6059.721 6059.946 6059.726 6059.746 6059.719 

f1(x) -8.8E-07 -2.02E-05 -1.79E-06 -6.9E-06 1.05E-06 

f2(x) -0.03588 -0.03589 -0.03588 -0.03588 -0.03588 

f3(x) -521.857 -546.549 -521.682 -518.735 -524.303 

f4(x) -63.363 -63.346 -63.362 -63.359 -63.364 

x1 0.8125 0.8125 0.8125 0.8125 0.8125 

x2 0.4375 0.4375 0.4375 0.4375 0.4375 

x3 42.0984 42.0974 42.0984 42.0981 42.0985 

x4 176.6372 176.6541 176.6378 176.641 176.6364 

Best 6059.721 6059.946 6059.726 6059.746 6059.719 

Mean 6440.379 6177.253 6081.781 6850.005 6082.570 

Std Dev. 448.471 130.930 67.242 426.000 45.702 

 

Table -5 Result Comparison for Pressure Vessel Design Optimization Problem - Region II 

Parameter Optimization Algorithm 

PSO [22] FFA [23] HS [24] EA [25] ADEBFOA [This Method] 

Cost(x) 5875.166 5850.383 5852.639 5850.383 5849.728 

f1(x) -0.00340 -7E-08 -0.00031 -7E-08 -0.00019 

f2(x) -0.00595 -0.00427 -0.00443 -0.00427 -0.00437 

f3(x) -506.790 -521.510 -523.682 -521.463 -41.152 

f4(x) -15.910 -18.635 -18.388 -18.635 -18.586 

x1 0.7500 0.7500 0.7500 0.7500 0.7500 

x2 0.3750 0.3750 0.3750 0.3750 0.3750 

x3 38.6840 38.8601 38.8441 38.8601 38.8504 

x4 224.09 221.3655 221.6125 221.3655 221.4136 

Best 5875.166 5850.383 5852.639 5850.383 5849.728 

Mean 6032.740 5937.338 6083.339 5925.650 5871.985 

Std Dev. 315.149 164.547 140.450 150.534 44.514 

 

Tension/Compression Spring Design Optimization Problem 

The cost function for the spring design optimization problem is given by equation (29) while equations (30-33) give the 

associated constraints [17]. 

𝐶𝑜𝑠𝑡 𝑥 = (𝑥3 + 2)𝑥2𝑥1
2           (29) 

𝑓1 𝑥 = {1 − ( 𝑥2
3𝑥3

7178 𝑥1
4)} ≤ 0          (30) 
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𝑓2 𝑥 = {( 4𝑥2
2−𝑥1𝑥2

12566  𝑥2𝑥1
3 −𝑥1

4)+ 
1

5108 𝑥1
2 −1} ≤ 0           (31) 

𝑓3 𝑥 = {1 − (140 .45𝑥1

𝑥2
2𝑥3

)} ≤ 0          (32) 

𝑓4 𝑥 = {
 𝑥1+𝑥2 

1.5
− 1} ≤ 0                  (33) 

The simple bounds for the spring design problem are given by: 

0.05 ≤ 𝑥1 ≤ 2.0, 0.25 ≤ 𝑥2 ≤ 1.3 and 2.0 ≤ 𝑥3 ≤ 15.0 

The comparison between the obtained best solution for the developed ADEBFOA algorithm and those obtained by 

various researchers using other metaheuristic-based algorithms is given in Table-6. 

 

Table-6 Result Comparison for Tension/Compression Spring Design Optimization Problem 

Parameter Optimization Algorithm 

GA [26] PSO [27] ES [28] DE [29] FFA [30] ADEBFOA 

[This 

Method] 

Cost(x) 0.012705 0.012675 0.012698 0.012748 0.012667 0.012666 

f1(x) -9.034065 -9.008948 -9.018026 -9.000686 -9.001002 -8.990954 

f2(x) -0.135661 -0.134066 -0.135133 -0.122109 -0.134734 -0.134904 

f3(x) -4.026318 -4.051307 -4.039301 -4.149707 -4.050127 -4.054598 

f4(x) -0.731239 -0.727085 -0.728665 -0.689903 -0.728850 -0.728270 

x1 0.051480 0.051728 0.051643 0.053862 0.051623 0.051665 

x2 0.351661 0.357644 0.355360 0.411284 0.355102 0.355930 

x3 11.632201 11.244543 11.397926 8.684380 11.385602 11.331890 

Best Solution 0.012705 0.012675 0.012698 0.012748 0.012667 0.012666 

The obtained results for the constrained engineering optimization problems studied were very comparable to those 

obtained from other metaheuristic-based algorithms. The developed Adaptive Differential Evolution/Bacterial Foraging 

Optimization hybrid algorithm (ADEBFOA) produced better results in both optimization regions (I & II) for the 

pressure vessel design problem. In region I, the obtained result of 6059.719 was quite close to the true global optimum 

of 6059.714335048436 obtained using both Mathematical analysis and Lagrange multiplier methods [31]. The 

developed adaptive hybrid algorithm outperformed the results of the other five metaheuristic techniques as given in 

Table 4.The results from the developed algorithm for the tension/compression spring design optimization problem were 

also superior to those from the other five optimization techniques in comparison. However, the obtained result of 

0.012666 was very close to that obtained by Yuksel C. & Hakan K. using Firefly Algorithm, that is 0.012667 as given 

in [30]. 

 

CONCLUSION 

This paper presented a new methodology for solving constrained optimization problems. The paper gives a step by step 

analysis for developing an adaptive hybrid algorithm in which Differential Evolution (DE) & Bacterial Foraging 

Optimization Algorithm (BFOA) are hybridized and adapted using both Genetic and Swarm Intelligence operators. The 

developed ADEBFOA algorithm was tested using the Standard Benchmark Functions and produced promising results. 

The algorithm performed better than other metaheuristic methods in eight of the ten high dimensional functions (F1-

F10) used. Having produced promising results on the Standard Benchmark Functions the developed algorithm was 

tested on constrained engineering optimization problems. The algorithm outperformed other metaheuristic optimization 

methods in the two constrained engineering problems solved (Pressure vessel design and tension/compression spring 

design problem). In both test cases, the developed algorithm was able to obtain better feasible solutions in majority of 

the test runs performed per problem. The results obtained show that the developed adaptive Differential 

Evolution/Bacterial Foraging Optimization hybrid algorithm (ADEBFOA) performs better in solving most complex 

constrained optimization problems. The future work of this research study is to use the developed algorithm in solving 

the highly dimensional, quite complex and non-linear power system expansion optimization problem. 
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