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ABSTRACT 

In this paper we investigate the periodic solution for nonlinear system of differential equations of some operators with 

impulsive action, by using the numerical-analytic method for periodic solutions which is given by Samoilenko. Theorems 

on existence and uniqueness of solutions are established under some necessary and sufficient conductions on compact 

space. This investigation leads us to the improving and extending to the above method and expands the results gained by 

Butris. 
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1. INTRODUCTION 

There are many subjects in physics and technology using mathematical methods that depends on the nonlinear 

differential equations, and it became clear that the existence of the periodic solutions and it's algorithm structure from 

more important problems in the present time. Where many of studies and researches dedicates for treatment the 

autonomous and non-autonomous periodic systems and specially with the integral equations and differential equations 

and the linear and nonlinear differential and which is dealing in general shape with the problems about periodic solutions 

theory and the modern methods in its quality treatment for the periodic differential equations. Samoilenko [6] 

andothersthey usednumerical analytic method to study the periodic solutions of differential equation and this method 

include uniformly sequences of periodic functions in studies [2-10]. 

Butris [2] assumes the numerical analytic method to study the periodic solutions for the ordinary differential equations 

and its algorithm structure and this method include uniformly sequences of the periodic functions and the result of that 

study is the using of the periodic solutions on a wide range for example see the following system of nonlinear differential 

equation, which has the form: 
𝑑𝑥

𝑑𝑡
= 𝜆𝑥 + 𝑓 𝑡, 𝑥, 𝑦     ,     𝑡 ≠ 𝑡𝑖     ,    ∆𝑥 = 𝐼𝑖 𝑥, 𝑦 , 

𝑑𝑦

𝑑𝑡
= 𝛽𝑥 + 𝑔 𝑡, 𝑥, 𝑦     ,     𝑡 ≠ 𝑡𝑖     ,    ∆𝑦  𝑡 = 𝑡𝑖

 = 𝐺𝑖 𝑥, 𝑦 
 

where𝑥 ∈ 𝐷𝜆 ⊆ 𝑅𝑛  , 𝑦 ∈ 𝐷𝛽 ⊆ 𝑅𝑛  ,  𝐷𝜆  is a closed and bounded domain. 

The vector functions 𝑓 𝑡, 𝑥, 𝑦 𝑎𝑛𝑑𝑔 𝑡, 𝑥, 𝑦 are defined on the domain: 

 𝑡, 𝑥, 𝑦 ∈ 𝑅1 × 𝐷𝜆 × 𝐷𝛽 =  −∞,∞ × 𝐷𝜆 × 𝐷𝛽  

Our work, we investigate the periodic solution for nonlinear system of differential equations of some operators with 

impulsive action, by using the numerical-analytic method for periodic solutions which is given by Samoilenko [5]. 

Consider the system of differential equations of some operators with impulsive action which has the form:  

 
𝑑𝑥

𝑑𝑡
= f t, x, Ax, Bx  , τ ≠ τi

 Δx τ=τi
= Ii x, Ax, Bx  

                                                                      (1) 
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where x ∈ D , D is the closure of bounded domain subset in Rn . 

The vector functions f(t, x, y, z ) and g(t, x, y ) are defined on the domain 

 t, x, (y, z)  ∈ R1 × D × D1  =  −∞,∞ × D × D1        (2) 

which are piecewise continuous functions in t, x, y, z  and periodic in t of period T. 

Let Ii x, y, z   be continuous vector functions, defined on the domain (2) and 

Ii+p x, y, z  = Ii x, y, z   , τi+p − τi = T                                                                                                   (3) 

for all i ∈ z+, x ∈ D,  z, y ∈ D1 and for some number p,  τi is finite positive sequence of numbers. 

Suppose that the operators A and B transform any piecewise continuous functions from the domain D to the piecewise 

contiuous function in the domain D1 respectively. Moreover 

Ax t + T = Ax(t) and Bx t + T = Bx t . 

Let the functions f t, x, y, z  , g t, x, y, z , Ii(t, x, y, z ) and the operators A, B satisfy the following inequalities. 

 f t, x, y, z   ≤ M1,  Ii(t, x, y, z )  ≤ M2,                                                                                              (4) 

 f t, x1, y1 , z1 − f t, x2, y2, z2  ≤ K1 x1 − x2 + K2 y1 − y2 + K3 z1 − z2  

 g t, x1, y1 , z1 − g t, x2, y2, z2  ≤ Q1 x1 − x2 + Q2 y1 − y2 + Q3 z1 − z2    (5) 

and 

 Ii t, x1, y1 , z1, w1 − Ii t, x2, y2, z2, w2  ≤ L1 x1 − x2 + L2 y1 − y2 + L3 z1 − z2 +  w1 − w2   (6) 

 Ax1 t − Ax2 t  +  Bx1 t − Bx2 t            ≤ (G1 + G2)  x1 t − x2 t       (7) 

for all t ∈ R1, x, x1, x2 ∈ D, y, y1 , y2, z, z1, z2 ∈ D1 where M1, M2, K1 , K2 , K3 , Q1, Q2 ,  Q3,L1 , L2, L3  and G1 , G2 are a 

positive constants. 

Consider the matrix 

Ω =  
K

T

3
K

pTH 2pH
               (8) 

Where 

K = (K1 +  K2 + K3) 1 +  G1 + G2 +  Q1 +  Q2 +   Q3  1 +  G1 + G2    

and 

 H = ( L1 + L2 +  L3  )[1 +  G1 + G2 +  Q1 + Q2 +  Q3 (1 +  G1 + G2 )] 

We define the non-empty sets as follows 

 
Df = D −  M1

T

2
+ 2p  M2

D1f = D1 − [ M1
T

2
 + 2p  M2] G1 + G2 

            (9) 

Furthermore, we suppose that the greatest Eigen-value λmax   of the matrix Λ does not exceed unity, i.e. 

 ω = K
T

2
+ pH(2 + K

T

2
) < 1  .                                                                                                          (10) 

Lemma 1. Let f(t) be a continuous (piecewise continuous) vector function in the interval 0 ≤ t ≤ T. Then 

  (f s −
1

T

t

0

 f(s)ds)ds

T

0

 ≤ α t max
t∈ 0,T 

 f t  , 

where α t = 2t(1 −
t

T
) . (For the proof see [5]) . 

2. APPROXIMATE SOLUTION 

The investigation of a periodic approximate solution of the system (1) makes essential use of the statements and 

estimates given below. 

Theorem 1. If the system of integro-differential equations with impulsive action (1) satisfy the inequalities (3) to 7) and 

the conditions (8), (10) has a periodic solution x = x t, x0  , passing through the point  0, x0 , x0 ∈ Df  , 

Ax0 ∈ D1f  and Bx0 ∈ D2f , then the sequence of functions: 

xm+1 t, x0 = x0 +  [f(s, xm s, x0 , ym s, x0 , zm s, x0 

t

0

)  

−
1

T
 g s, xm s, x0 , ym s, x0 , zm s, x0  

T

0

ds]ds  

+  Ii

0<τi <𝑡

 xm ti , x0 , ym ti , x0 , zm ti , x0   
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−
t

T
 Ii(xm ti , x0 , ym ti , x0 , zm ti , x0  )

p
i=1 ,       (11) 

with 

x0 t, x0 = x0  and   Axm t, x0 = ym t, x0   and  Bxm t, x0 = zm t, x0 , 

m = 0,1,2,⋯ 

is periodic in t of period T, and uniformly convergent as m → ∞ in 

 t, x0 ∈ R1 × Df =  −∞,∞ × Df           (12) 

to the vector function x0(t, x0) defined on the domain (12), which is periodic in t of period T and satisfying the system of 

integral equation 

x t, x0 = x0 +  [f(s, x s, x0 , y s, x0 , z s, x0 

t

0

)  

−
1

T
 g s, x s, x0 , y s, x0 , z s, x0  

T

0

ds]ds  

+  Ii

0<τi <𝑡

 x ti , x0 , y ti , x0 , z ti , x0   

−
t

T
 Ii x ti , x0 , y ti , x0 , z ti , x0  ,      

p
i=1         (13) 

which a unique solution of the system (1) provided that 

 x0 t, x0 − x0 ≤  M1
T

2
+ 2p  M2          (14) 

and 

 x0 t, x0 − xm (t, x0) ≤ ωm 1 −ω −1( M1
T

2
+ 2p  M2)                                                            (15) 

for all m ≥ 1, t ∈ R1, where the eigen-value λ of the matrix Ω is a positive fraction less than one. 

Proof. Consider the sequence of functions x1 t, x0 , x2 t, x0 ,⋯ , xm t, x0 ,⋯, 

defined by recurrence relation (11). Each of the functions of the sequence is periodic in t of period T. 

Now, by Lemma 1, we have 

 xm t, x0 − x0 =  x0 +  [f(s, xm s, x0 , ym s, x0 , zm s, x0 

t

0

) − 

−
1

T
 g(s, xm s, x0 , ym s, x0 , zm s, x0  )

T

0

ds]ds + 

+  Ii

0<τi <𝑡

(xm ti , x0 , ym ti , x0 , zm ti , x0  ) − 

−
t

T
 Ii xm ti , x0 , ym ti , x0 , zm ti , x0  

p

i=1

−  x0  

≤ (1 −
t

T
)  f(s, xm s, x0 , ym s, x0 , zm s, x0  ) 

t

0

ds + 

+
t

T
  f(s, xm s, x0 , ym s, x0 , zm s, x0  ) ds

T

t

+ +  Ii

0<τi <𝑡

 (xm ti , x0 , ym ti , x0   )  

 +
 t 

T
  Ii xm ti , x0 , ym ti , x0   ≤  M1

T

2
 + 2p  M2                                              

p
i=1     (16) 

From (7) and (14), we have 

  
 Axm t, x0 − Ax0 +  Bxm t, x0 − Bx0 ≤ [ M1

T

2
 + 2p  M2] G1 + G2                  (17) 

for all x0 ∈ Df . 

For m = 1, in (2.1), we get 

 x2 t, x0 − x1(t, x0) ≤ (1 −
t

T
)  K1 x1 s, x0 − x0 +  K2 y1 s, x0 − y0(s, x0) 

t

0

 

+ K3 z1 s, x0 − z0(s, x0)  )ds + 



Butris                                                                               Euro. J. Adv. Engg. Tech., 2020, 7(5):27-32 

_________________________________________________________________________________ 

30 

 

+
t

T
  K1 x1 s, x0 − x0 +  K2 y1 s, x0 − y0(s, x0) 

T

t

 

+ K3 z1 s, x0 − z0(s, x0)  )ds + 

+  L1

0<τi <𝑡

 x1 ti , x0 − x0 +  L2 y1 ti , x0 − y0(ti , x0)  

+ L3 z1 ti , x0 − z0(ti , x0) +  w1 ti , x0 − w0(ti , x0) )  

+
 t 

T
  L1

p

i=1

 x1 ti , x0 − x0 +  L2 y1 ti , x0 − y0(ti , x0)  

+ L3 z1 ti , x0 − z0(ti , x0)  )  

≤  1 −
t

T
   K

t

0

  M1

T

2
+ 2p  M2 ds 

+
t

T
 K

T

t

( M1

T

2
+ 2p  M2)ds + H( M1

T

2
 + 2p  M2) G1 + G2  

≤ α t ( M1

T

2
+ 2p  M2) + H( M1

T

2
 + 2p  M2) G1 + G2  

≤ F1α t + F2 = F1
T

2
+ F2         (18) 

Where 

F1 =  K( M1

T

2
+ 2p  M2)  

and 

F2 =  H( M1

T

2
 + 2p  M2) G1 + G2  

If the following inequality is true 

 xm t, x0 − xm−1(t, x0) ≤ F1(m−1)
α t + F2(m−1)

 

≤ F1(m−1)

T

2
+ F2(m−1)

           (19) 

for all m = 1,2,⋯  . 

Then, we shall to prove that 

 xm+1 t, x0 − xm (t, x0) ≤ K(F1(m−1)

T

2
+ F2(m−1)

)α(t) + 2pH(F1(m−1)

T

2
+ F2(m−1)

 )   (20) 

for all m = 0,1,2,⋯  . 

By mathematical induction, we have 

 xm+1 t, x0 − xm (t, x0) ≤ F1(m )
α t + F2(m )

≤
T

2
F1(m )

+ F2(m )
 ,      (21) 

where 

F1(m+1)
= K

T

2
F1(m )

+ KF2(m )
 , F2(m+1)

= pHTF1(m )
+ 2pHF2(m )

,                           (22) 

F1(0 )
= ( M1

T

2
+ 2p  M2) ,   F2(0 )

= 2p( M1
T

2
+ 2p  M2), 

m = 0,1,2,⋯. 

It is sufficient to show that all solutions of (11) approach zero as m → ∞ , i.e. it is necessary and sufficient that the eigen 

values of the matrix Λ are assumed to be within a unit circle. 

It is well-known that the characteristic equation of the matrix Λ is 

K
T

2
+ pH  2 + K

T

2
 < 1                                                                                                            (23) 

And this ensures that the sequence of functions (11) is convergent uniformly on the domain (12) as m → ∞  . 

Let 

limm→∞ xm (t, x0) = x∞ t, x0 ,                                                                                                      (24) 

Since the sequence of functions (11) is periodic in t of period T, then the limiting is also periodic in t of period T. 

Moreover, By lemma 1 and (24) and the following inequality 

 xm+1 t, x0 − xm (t, x0) ≤  xm+i+1 t, x0 − xm+i(t, x0) ≤

k−1

i=0
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≤ ωm +i

k−1

i=0

( M1

T

2
+ 2p  M2) 

is hold and  the inequalities (14) and (15) are satisfied for all m ≥ 0 . 

Finally, we have to show that x(t, x0) is unique solution of (1). on the contrary, we suppose that there is at least two 

different solutions x(t, x0) and r(t, x0) of (1). 

From (13), the following inequality holds: 

 x t, x0 − r t, x0  ≤  1 −
t

T
  K

t

0

 x s, x0 − r s, x0  ds 

+
t

T
 K x s, x0 − r s, x0  

T

t

ds +  H

0<τi <𝑡

 x ti , x0 − r ti , x0   

+
t

T
 H

p
i=1  x ti , x0 − r ti , x0            (25) 

Setting  x t, x0 − r t, x0  = h t , the inequality (25) can be written as: 

h(t) ≤ (1 −
t

T
) K

t

0

h(s)ds +
t

T
 Kh(s)

T

t

ds +  H

0<τi <𝑡

h(ti) +
t

T
 H

p

i=1

h(ti) 

Let maxt∈[0,T] h(t) = h0 ≥ 0 . By iteration, we get: 

h t ≤ Nmα t + Mm           (26) 

From (2.14), we have: 

 
Nm+1

Mm+1
 =  

K
T

2
K

pTH 2pH
  

Nm

Mm
  ,                                                          (27) 

which satisfies the initial conditions N0 = 0, M0 = h0that is 

 
Nm

Mm
 =  

K
T

2
K

pTH 2pH
 

m

 
0

hm
 .                                                                                                          (28) 

Hence it is clear that if the condition (23) is satisfied then Nm → 0 and Mm → 0 as m → ∞. 

From the relation (26) we get h(t) ≡ 0 or x t, x0 = r t, x0 , i.e. x t, x0  is a unique solution of  

(1).   ∎ 

 

3. EXISTENCE OF SOLUTION 

The problem of the existence of periodic solution of period T of the system (1) is uniquely connected with the existence 

of zeros of the function Δ(x0) which has the form: 

Δ x0 =
1

T
[ f t, x0 t, x0 , y0 t, x0 , z0 t, x0  

T

0
dt +  Ii

p
i=1 (x0 ti , x0 , y0 ti , x0 , z0 ti , x0  )]    (29) 

Since this function is approximately determined from the sequence of functions 

Δm x0 =
1

T
[ f t, xm t, x0 , ym t, x0 , zm t, x0  

T

0

dt  

+ Ii
p
i=1 (xm ti , x0 , ym ti , x0 , zm ti , x0  )]                                             (30) 

wherex0(t, x0) is the limiting of the sequence of functions (11). Also 

y0 t, x0 = Ax0 t, x0  and  z0 t, x0 = Bx0(t, x0) 

Now, we prove the following theorem taking the following inequality will be satisfied for all m ≥ 1. 

 Δ x0 − Δm (x0) ≤  ωm 1 − ω −1(K +
p

T
H)( M1

T

2
+ 2p  M2)                            (31) 

 

Theorem 2. If the system of equations (1) satisfies the following conditions: 

(i)The sequence of functions (11) has an isolated singular point x0 = x0 , Δm (x0) ≡ 0, for all t ∈ R1; 

(ii)The index of this point is nonzero; 

(iii)There exists a closed convex domain D4 belonging to the domain Df  and possessing a unique singular point x0 such 

that on it is boundary ΓD4
 the following inequality holds 
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inf
x∈ΓD 2

 Δm (x0) ≤ ωm 1 −ω −1(K +
p

T
H)( M1

T

2
+ 2p  M2) 

for all m ≥ 1. Then the system (1) has a periodic solution x = x(t, x0) for which x 0 ∈ D2. 

Proof. By using the inequality (31) we can prove the theorem is a similar way to that of theorem 2.1.2 [2]. 

Remark 3.1[5].  When Rn = R1 , i.e. when x0is a scalar, theorem 3.1 can be proved by the following. 

Theorem 3.2. Let the functions f(t, x, y, y, z, w) and Ii(x, y, z, w) of system (11) are defined on the interval [a, b] in R1. 

Then the function (30) satisfies the inequalities: 

 
min

a+( M1
T

2
+2p  M2)≤x0≤b−( M1

T

2
+2p  M2)

Δm x
0 ≤ − ωm 1 − ω −1(K +

p

T
H)

max
a+( M1

T

2
+2p  M2)≤x0≤b−( M1

T

2
+2p  M2)

Δm x
0 ≥ ωm 1 − ω −1(K +

p

T
H)    

      (32) 

Then (1.1) has a periodic solution in t of period T for which 

x0 0 ∈ [a + ( M1

T

2
+ 2p  M2), b − ( M1

T

2
+ 2p  M2)] . 

Proof.Let x1 and x2 be any points of the interval [a,b] such that 

 

Δm x1 = min    Δm x
0 

a+( M1
T

2
+2p  M2)≤x0≤b−( M1

T

2
+2p  M2)

,

Δm x2 = max   Δm x
0 

a+( M1
T

2
+2p  M2)≤x0≤b−( M1

T

2
+2p  M2)

.

 
 
 

 
 

       (33) 

By using the inequalities (31) and (32) , we have 

 Δm x1 = Δm x1 +  Δm  x1 − Δm x1  < 0   ,

Δm x2 = Δm x2 + (Δm x2 − Δm x2 ) > 0    .
         (34) 

From the continuity of Δ(x0) and by using (3.6), there exists a point x0, x0 ∈  x1 , x2 , such that Δ(x0) ≡ 0, i.e. x =

x(t, x0) is a periodic solution in t of period T for which 

x0(0) ∈ [a + ( M1

T

2
+ 2p  M2), b − ( M1

T

2
+ 2p  M2)] .          

Remark 3.2. It is clear that when we put Ii ≡ 0, we get a periodic solution of (1) without introducing impulsive action. 
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