
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2020, 7(5):130-133

Research Article ISSN: 2394 - 658X

130

Impact of Object-Oriented Design on Software Testing

Naga Sai Krishna Mohan Pitchikala

Department of Computer Science

University of Texas at Dallas, Dallas, TX.

Nxp180022@utdallas.edu

ABSTRACT

Object-Oriented Software Development (OOSD) is a technique that involves building software by organizing the

system around objects which represent real-world entities. These objects interact with each other to perform

tasks, making the system more modular, reusable, and maintainable. OOSD's flexibility and scalability have

made it a popular choice among developers. Object-Oriented Design (OOD), a crucial aspect of OOSD,

introduces challenges in software testing due to concepts like encapsulation, inheritance, and polymorphism. The

internal state of objects is concealed by encapsulation, making it challenging for testers to verify what's

happening inside an object without using public methods. While it is possible for subclasses to inherit behaviors

from parent classes through inheritance, testing is challenging due to the potential impact of changes in parent

class boundaries on all child classes. With polymorphism, the complexity of testing requires more scenarios as

objects can be created in various forms and methods are dynamically bound at runtime. Traditional testing

methods often struggle with these concepts, so we need specialized approaches to handle them. This paper

discusses solutions like scenario-based testing, incremental testing for inheritance, and the use of testing

frameworks like Junit to handle these problems. These approaches help address the challenges of testing object-

oriented systems, ensuring that software quality is maintained via testing despite the complexities introduced by

OOD.

Keywords: Object-Oriented Software Development (OOSD), Object-Oriented Design (OOD)

__

INTRODUCTION

Object Oriented Software Development:

Object-Oriented Software Development (OOSD) is a methodology used for designing and developing software

systems based on the principles of Object-Oriented Programming (OOP). It focuses on organizing software around

objects (which represents real-world entities) or concepts that have both data (attributes) and behaviors (methods).

This method suggests that software should be designed and developed to replicate our interactions with physical

objects to make it more adaptable, manageable and scalable.

Key Concepts of Object-Oriented Software Development:

1. Objects: Objects are the fundamental blocks of object-oriented software design (OOSD). They represent entities

from the real world by combining data (also known as attributes or properties) and actions (often called methods or

functions). For example, in a banking system the customer account would be an object with data being the

customer's name and account balance and actions being depositing or withdrawing money.

2. Classes: Classes are the blueprint for creating objects. They define the structure and behaviors that the objects

created from the class will inherit. For example, a class “Car” will define properties like color and speed and

methods like accelerate or brake. Objects created from this car will inherit those properties. Like Car-A and Car-B

are the instances of the class Car which will inherit those properties.

3. Key Principles: As stated in the earlier part OOSD is based on the principles of Object-Oriented Programming.

There are 4 such principals [1, 2]

a. Abstraction: Abstraction is a process where the implementation details of an object are hidden. This simplifies

the user interaction with objects by focusing on what the object does, rather than how it does it.

Pitchikala NSKM Euro. J. Adv. Engg. Tech., 2020, 7(5):130-133

131

b. Encapsulation: Encapsulation is a process of bundling the data and actions inside the object while keeping the

internal details hidden. This approach restricts the access to the object inner methods and protects it from being

changed in unexpected ways which improves data security and modularity.

c. Inheritance: Inheritance allows a new class (subclass) to inherit the characteristics (data and actions) of an

existing class (superclass). This improves the code reusability.

d. Polymorphism: Polymorphism allows objects from different classes to be used in the same way because they

share a common superclass. Even though these objects may act differently (because they are from different classes),

they can still be accessed by the same set of actions.

The Process of Object-Oriented Software Development:

1. Object-Oriented Analysis (OOA): This is the first phase in the OOSD. In this phase, developers gather all the

requirements to identify the key objects or entities in the system. Then they focus on understanding the problem

domain and defining what the system should to solve the problem usually this is done using models like class

diagrams and use case diagrams to identify the objects.

2. Object-Oriented Design (OOD): After identifying the objects in analysis phase, the next step is to design how

the interaction between these objects within the system. This involves defining classes, relationships and how they

collaborate to fulfill the system’s requirements.

3. Object-Oriented Programming (OOP): After the design phase it the implementation phase. In this phase the

design is implemented through code using an object-oriented programming language like Java, C++, or Python.

Developers define and write the classes to create objects and implement the system’s functionality based on the

design.

Fig. 1. Object-Oriented Software Development Methodology

Benefits of Object-Oriented Software Development:

• Modularity: The objects combine both data and actions into one unit, and they can be created and worked on

separately from other parts of the system. This helps in breaking down the complex system into smaller and more

manageable pieces, making it easier to understand and develop.

• Reusability: By the means of inheritance OOSD provides a way reuse the code in different parts of the system or

even in future projects. By this means the DRY principle (Don’t repeat yourself) of coding is also implemented

which saves time and effort

• Flexibility: Creating new objects or extending existing ones allows new features and functionalities to be brought

in which, in turn, helps respond to new requirements. Such flexibility allows the developers to extend the systems

instead of the need to rewrite them entirely.

• Maintainability: Due to encapsulation, all the data and actions of the objects are hidden from the outside, thus

making it easy to manage changes. When changes are needed, it is only necessary to change a few objects or classes

and not the whole system thus making it easier to maintain.

• Scalability: As systems become larger or transform in any way, it is easy to add new objects or to extend existing

ones. It is also possible to build upon the existing architecture by defining new classes which derive from other

classes or use existing ones without heavy rearchitecting.

Now that we have a clear understanding of Object-Oriented Software Development (OOSD) and ways in which it

enhances the software development process to a great extent, it is important to explore the drawbacks that OOSD

introduced into the software testing. In the following sections of the paper, we will analyze these problems in the

detail. To begin, we will start with examining the literature available on this issue to understand how OOSD affects

testing. After that we will identify specific testing issues that arise from key object-oriented concepts like

encapsulation, inheritance, and polymorphism and finally, we will discuss effective ways and approaches to handle

Pitchikala NSKM Euro. J. Adv. Engg. Tech., 2020, 7(5):130-133

132

these challenges such as scenario-based testing, incremental testing and the use of modern testing frameworks. By

understanding these approaches, we aim to increase the software quality even in complex object-oriented systems.

LITERATURE REVIEW

The Problematic of Testing Object-Oriented Software [4]:

The paper focuses on the issues of object-oriented software testing methodologies, especially due to concepts such

as encapsulation, inheritance and polymorphism. The authors make it clear that methods of testing which were

developed to deal with procedural languages cannot be used in oops and they must be modified. One of the

solutions offered is reusing the inheritance of behaviors from class hierarchies to cut down the amount of testing

done. They also caution that this practice could complicate the development of tests.

Testing Object-Oriented Systems: Models, Patterns, and Tools [5]:

This book serves as a comprehensive guide to testing object-oriented systems. It details how principles of OOP,

such as polymorphism and inheritance, introduce complexities into traditional testing approaches and explains the

need for new techniques, known as design patterns, to address the testing challenges in object-oriented systems. The

author introduces various test design patterns, such as factory patterns for object creation during tests and observer

patterns to validate object states indirectly, offering practical solutions to OOP-specific testing challenges. These

patterns make the process of testing object-oriented systems more systematic and effective by providing ways to

handle the complexity introduced by OOP features.

Class Testing and the Unified Testing Framework [6]:

In this book the author focuses on testing the individual classes in object-oriented systems by looking at the "state"

of objects and how their behavior changes over time, rather than just testing the specific methods. This approach is

useful for systems that are quite complex as there are units or classes which interact with one another and thus

change the way the entire system works. This approach emphasizes on such important aspects as state-based testing

where tests depend on various states of the object under test and also calls for utilizing scenarios to help cope with

polymorphism making sure that proper test of interactions between objects of different classes is performed. This

technique is especially important when it comes to dealing with the problems associated with the class interaction

of an object-oriented programming language.

CHALLENGES IN TESTING OBJECT-ORIENTED SYSTEMS

While Object-Oriented Design offered many benefits with the introduction of the concepts like encapsulation,

interference and polymorphism, it also introduced some challenges to the aspect of software testing which are

discussed below

• Encapsulation: Encapsulation hides the object’s internal workings and only allows accessing through its public

methods. While this provides better security and stability, it makes the testing of such objects rather problematic as

the testers are unable to see or change the private data contained within the object itself. Rather, they have to use the

public methods which also has the limitation on how deep the internal state of the object can be examined.

• Inheritance: Inheritance helps subclasses to inherit the attributes present in the parent class thus increasing code

reusability. However, this makes testing hard since any modification made in one parent class can affect all the

subclasses. In other words, methods that work perfectly in the parent class may behave differently in some of its

subclasses meaning both the parent and child classes need to be carefully tested.

• Polymorphism: Polymorphism allows subclasses to override methods where the specific method that gets called

through invocation is decided at runtime. This approach makes the testing challenging because it will be harder to

predict which method will be called in different scenarios. As the number of child classes increase, so do the

number of test cases, hence making it hard to test every method combination possible.

Additional Challenges in OOD Testing

• Since OOD involves complex interactions between objects, testing requires creating real-world scenarios where

objects interact. This type of testing is more detailed and takes more time than traditional testing methods.

• Object-oriented systems rely heavily on message passing between objects, which makes it harder to predict and

test how objects will communicate with each other. As a result, more advanced testing techniques are needed to

ensure the system behaves as expected under various conditions.

OVERCOMING THE CHALLENGES OF TESTING OBJECT-ORIENTED SYSTEMS

These approaches provide structured solutions to overcome the testing challenges introduced by object-oriented

systems, ensuring robust and reliable software quality.

Scenario-Based Testing

Scenario-based testing is a popular method for dealing with the challenges associated with testing polymorphic

systems. By using this approach, it is possible to create realistic situations in which objects from different classes

interact, ensuring that objects behave as expected, particularly when subclass methods are overridden. It helps in

verifying that the appropriate method is invoked during polymorphic interactions, making it simpler to evaluate

dynamic behaviors in controlled conditions.

Pitchikala NSKM Euro. J. Adv. Engg. Tech., 2020, 7(5):130-133

133

Incremental Testing for Inheritance

Subclass behavior can be validated through incremental testing in inheritance-based systems. Rather than repeating

all inherited methods, this technique concentrates on testing the new or modified functionality in the subclass. This

reduces redundant testing while ensuring thorough verification. Additionally, regression testing ensures that

changes in the parent class do not negatively impact the subclasses.

Testing Frameworks

Frameworks such as JUnit (for Java) save developers from the complexities of testing object-oriented software.

These frameworks allow developers to write unit tests that target public interfaces, indirectly testing encapsulated

behaviors. They also support testing different instances of polymorphism by using mock objects to simulate the

interactions between class instances making testing more efficient while adhering to encapsulation principles.

Class Hierarchy Testing

Class Hierarchy Testing is one of the most important testing techniques in OOD. It is the practice of testing the

whole class hierarchy, right from abstract base class to multiple derived classes. It ensures the correct

implementation and extension of behaviors that are common to its subclasses. For each and all levels of hierarchy,

test cases are created to confirm that behavior at that level in the hierarchy is as it should be, and that subclasses

comply with the obligations of the super classes.

CONCLUSION

The techniques in object-oriented design have been the building blocks of present-day software development.

However, these principles make existing testing methods more challenging, particularly with features such as

encapsulation, inheritance, and polymorphism. This has led to the development of new approaches for testing

object-oriented software, such as scenario-based testing, incremental testing for inheritance, mock objects, and

modern testing frameworks. These methods help ensure that OOD systems meet performance requirements,

maintain high quality, and are easier to manage. To fully benefit from OOD while maintaining high-quality

software, developers need to adopt testing strategies that handle the complexity of OOD. As object-oriented

programming becomes more widely used, adapting testing processes to fit OOD is crucial for sustaining software

quality in the future.

REFERENCES

[1]. https://www.freecodecamp.org/news/object-oriented-programming-concepts-21bb035f7260/

[2]. https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-

645af8b43727

[3]. Object-Oriented and Classical Software Engineering Eighth Edition by Stephen R. Schach

[4]. www.witpress.com/Secure/elibrary/papers/SQM94/SQM94029FU2.pdf

[5]. Testing Object-Oriented Systems: Models, Patterns, and Tools by Binder, R. (2000)

[6]. Schnizler, Moritz & Lichter, Horst. (2000). Test Automation for Object-Oriented Frameworks.

[7]. https://qatestlab.com/resources/knowledge-center/scenario-based-testing/

[8]. https://www.veracode.com/blog/secure-development/static-testing-vs-dynamic-testing

