
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2020, 7(3):53-62

Review Article ISSN: 2394 - 658X

53

Angular Performance Best Practices

Yash Jani

Sr. Software Engineer

Fremont, California, US

yjani204@gmail.com

ABSTRACT

Angular [1] is a widely used framework for building dynamic single-page web applications [2]. However,

ensuring optimal performance can be challenging as applications scale. This paper provides a detailed overview

of best practices to enhance Angular [1] application performance. We explore key performance bottlenecks,

such as inefficient Change detection [7] cycles and suboptimal DOM manipulations, and offer practical

solutions [3]. The best practices discussed include efficient data binding techniques using the OnPush Change

detection [7] strategy, optimized use of components and directives to minimize unnecessary DOM interactions,

and designing reusable and efficient components. Additionally, we cover lazy loading and code splitting

methods to reduce initial load times, and the judicious use of pipes and expressions to avoid performance

degradation. By implementing these practices, developers can significantly improve the efficiency and

responsiveness of Angular [1] applications.[4]

Key words: Angular [1], performance optimization, data binding, digest cycle, directive usage, component

design, lazy loading, code splitting, filters, expressions, single-page application, web development, efficiency,

responsiveness, front-end development, best practices.
__

_

INTRODUCTION

Since its release in 2016, Angular [1] has established itself as a robust framework for building dynamic, single-

page web applications (SPAs). This framework, developed and maintained by Google, represents a complete

rewrite of its predecessor, AngularJS, and introduces a wealth of new features and performance enhancements.

Angular [1]'s component-based architecture, along with its reliance on TypeScript, offers developers a more

modern and scalable approach to web development. However, maintaining optimal performance becomes a

critical challenge as applications grow in complexity and size.

Angular [1] introduces fundamental concepts to enhance development efficiency and application performance.

These include a powerful dependency injection system [5], an improved Change detection [7] mechanism, and

support for reactive programming through RxJS [6]. Despite these advancements, developers often encounter

performance bottlenecks, particularly when applications scale. Common issues include inefficient Change

detection [7] cycles, suboptimal DOM manipulations, and improper use of Angular [1]’s extensive feature set.

Addressing these issues requires a deep understanding of Angular [1]'s internal workings and adopting best

practices tailored to the framework's architecture.

While the Change detection [7] mechanism in Angular [1] is more efficient than AngularJS's digest cycle, it can

still pose significant performance challenges. Angular [1]'s default Change detection [7] strategy, which checks

every component in the application tree for changes, can lead to performance degradation, especially in large

applications. This paper explores the OnPush Change detection [7] strategy, which allows developers to

optimize Change detection [7] by only checking components when their inputs change, thereby reducing the

computational overhead.

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

54

Efficient use of Angular [1]’s component and directive system is another critical aspect of performance

optimization. Components are the building blocks of Angular [1] applications, and their design directly impacts

performance. Reusable and well-encapsulated components promote code maintainability and enhance runtime

efficiency. On the other hand, directives provide a way to extend HTML functionality, but improper use can

lead to excessive DOM manipulations and performance issues. This paper provides guidelines for creating

performant components and directives, emphasizing the importance of minimizing unnecessary DOM

interactions.

Lazy loading and code splitting are essential techniques for optimizing the initial load time of Angular [1]

applications. By deferring the loading of non-critical modules and components until needed, developers can

significantly reduce the initial payload, leading to faster application startup times. This paper discusses the lazy

loading implementation using Angular [1]'s routing mechanism and explores the benefits of code splitting to

improve application performance.

Angular [1]'s powerful template syntax, including pipes and expressions, offers a convenient way to transform

and display data. However, improper use of these features can lead to performance degradation. Pipes, for

instance, can be computationally expensive if used extensively in templates. This paper advocates for the

judicious use of pipes and expressions, providing best practices for their efficient implementation.

Caching and memoization strategies are also explored to enhance performance. By storing the results of

expensive computations and reusing them when needed, developers can reduce the need for redundant

calculations and improve application responsiveness. This paper discusses implementing caching in Angular [1]

using services and other built-in mechanisms.

Finally, continuous performance monitoring and profiling are essential for identifying and addressing

performance bottlenecks. Tools such as Angular [1] DevTools and browser developer tools provide valuable

insights into Angular [1] applications' performance characteristics. This paper emphasizes the importance of

regular performance profiling and offers practical tips for using these tools to optimize Angular [1] applications.

In conclusion, this paper provides a comprehensive guide to optimizing Angular [1] applications. By

implementing the best practices discussed, developers can address common performance issues and build

Angular [1] applications that are both efficient and responsive. This exploration contributes to the broader

discourse on web application performance and offers practical insights that are directly applicable to modern

web development frameworks.

PROPOSED OPTIMIZATION TECHNIQUES

● Efficient Change detection [7]

Change detection [7] is one of the most critical aspects of Angular [1]'s performance. It is the process by which

Angular [1] updates the view to reflect changes in the underlying data model. By default, Angular [1] uses the

"default" Change detection [7] strategy, which checks every component in the application tree for changes,

starting from the root component. While this ensures that the view is always up-to-date, it can become a

performance bottleneck in large applications with many components, as it can result in unnecessary checks and

updates.

1. OnPush Change detection [7] Strategy

The OnPush Change detection [7] strategy is a powerful optimization tool that developers can leverage to

reduce the performance overhead associated with Angular [1]'s default Change detection [7] mechanism. When

using OnPush, Angular [1] only checks a component for changes if one of its input properties changes, or if an

event originates from the component or one of its children. This strategy significantly reduces the number of

Change detection [7] cycles and the work Angular [1] has to perform.

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

55

In this example, the OnPushComponent will only be checked for changes when the data input property

changes. This means any changes to other application parts will not trigger Change detection [7] for this

component, thus improving performance.

2. Immutable Data Structures

One key principle behind effectively using the OnPush Change detection [7] strategy is working with immutable

data structures. Immutable data ensures that changes in data can be easily detected by Angular [1], as any

change results in a new object reference. This is crucial for OnPush, as it relies on reference changes to

determine if a component needs to be checked for updates.

By ensuring that the data object is immutable, any change to its properties will result in a new object

reference, which Angular [1] can detect and thus update the view accordingly.

3. Detaching and Reattaching Change detection [7]

Another advanced technique for optimizing Change detection [7] is manually detaching and reattaching change

detectors. This is useful in scenarios where application parts are not frequently checked for changes.

// Example: Manually Detaching and

Reattaching Change detection

import { Component, ChangeDetectorRef }

from '@angular/core';

// Example: Using OnPush Change detection

[7] Strategy

import { Component,

ChangeDetectionStrategy, Input } from

'@angular/core';

@Component({

selector: 'app-onpush',

template: `<p>{{ data }}</p>`,

changeDetection:

ChangeDetectionStrategy.OnPush

})

export class OnPushComponent {

@Input() data: string;

}

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

56

In this example, the ManualChangeDetectionComponent has its change detector

detached initially, meaning it will not participate in Angular [1]'s Change detection [7] mechanism. When the

updateData method is called, the change detector is manually reattached and checked for changes using

detectChanges(). This can significantly improve performance in scenarios where frequent updates are

unnecessary.

4. Using TrackBy with NgFor

When using ngFor to render lists, the default Change detection [7] strategy can lead to performance issues.

Angular [1] may re-render the entire list whenever the data changes. Using trackBy helps Angular [1] to

identify items in the list, minimizing re-renders uniquely.

})

export class TrackByComponent {

items = [{ id: 1, name: 'Item 1' }, {

id: 2, name: 'Item 2' }];

trackByFn(index: number, item: any):

number {

return item.id; // or item.id

}

}

// Example: Using trackBy with NgFor

@Component({

selector: 'app-track-by',

template: `

<li *ngFor="let item of items;

trackBy: trackByFn">{{ item.name }}

`

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

57

The trackByFn function allows Angular [1] to track each item by its unique identifier, reducing unnecessary

DOM manipulations and enhancing performance.

● Optimized Component and Directive Usage

Optimizing the usage of components and directives is crucial for maintaining the performance and scalability of

Angular [1] applications. Components and directives are the fundamental building blocks of Angular [1], and

their design and implementation directly impact the efficiency of the application. Properly optimizing these

elements can significantly improve performance and maintainability.

1. Reusable and Well-Encapsulated Components

Designing reusable and well-encapsulated components is essential for optimizing performance. Reusability

enhances code maintainability and ensures that the same logic is not duplicated across different parts of the

application, reducing redundancy. Encapsulation helps isolate the component's functionality, making it easier to

manage and optimize.

In this example, the ReusableComponent is designed to display data passed to it via the data input

property. This component can be reused across the application, ensuring the data display logic is centralized and

easily manageable.

2. Avoiding Complex Logic in Templates

 To maintain optimal performance, it is important to avoid placing complex logic in templates. Templates

should focus primarily on displaying data and not contain extensive logic or computations. Instead, complex

logic should be moved to the component class or services.

The processData method contains the complex logic that processes the input data in this example. This approach

ensures that the template remains simple and focused on data presentation.

// Avoid complex logic in templates

@Component({

selector: 'app-complex-logic',

template: `<div>{{ processedData

}}</div>`

})

export class ComplexLogicComponent {

@Input() data: string;

processedData: string;

ngOnInit() {

this.processedData =

this.processData(this.data);

}

processData(data: string): string {

// Complex logic here

return data.toUpperCase();

}}

// Example: Creating a Reusable Component

import { Component, Input } from

'@angular/core';

@Component({

selector: 'app-reusable',

template: `<div>{{ data }}</div>`

})

export class ReusableComponent {

@Input() data: string;

}

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

58

3. Optimized Directive Implementation

Directives extend the functionality of HTML elements and are powerful tools in Angular [1]. However,

improper use of directives can lead to performance issues, particularly due to excessive DOM manipulations.

Optimizing directives involves using Angular [1]'s tools, such as isolate scope and proper linkage functions, to

streamline DOM interactions and avoid unnecessary updates.

This HighlightDirective adds a background color to the host element. The directive efficiently updates

the DOM element only when the input property changes, minimizing unnecessary DOM manipulations.

4. Utilizing Angular [1] Lifecycle Hooks

 Angular [1] lifecycle hooks, such as ngOnInit, ngOnChanges, and ngOnDestroy, provide

powerful mechanisms for optimizing component performance. These hooks allow developers to manage

resources more effectively, initialize data at the appropriate times, and perform cleanup tasks to prevent memory

leaks.

// Example: Using Lifecycle Hooks for

Optimization

import { Component, Input, OnChanges,

OnInit, OnDestroy } from '@angular/core';

@Component({

selector: 'app-lifecycle',

template: `<div>{{ data }}</div>`

})

export class LifecycleComponent

implements OnInit, OnChanges, OnDestroy {

@Input() data: string;

ngOnInit() {

// Initialize data or start necessary

processes

console.log('Component initialized');

}

ngOnChanges() {

// Respond to changes in input

properties

console.log('Input data changed');

}

ngOnDestroy() {

from '@angular/core';

@Directive({

selector: '[appHighlight]'

})

export class HighlightDirective {

@Input() set appHighlight(color:

string) {

this.el.nativeElement.style.backgroundCol

or = color;

}

constructor(private el: ElementRef) {}

}

// Example: Creating a Performant

Directive

import { Directive, ElementRef, Input }

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

59

In this example, the LifecycleComponent uses ngOnInit to initialize data, ngOnChanges to react to

input property changes, and ngOnDestroy to perform cleanup tasks. These hooks help manage the

component's lifecycle efficiently, ensuring optimal performance and resource utilization.

5. Minimizing Change detection [7] Impact

In addition to the OnPush Change detection [7] strategy, developers can further minimize the impact of Change

detection [7] by optimizing the structure of their components and directives. For example, breaking down

complex components into smaller, more focused components can reduce the scope of Change detection [7],

making the application more efficient.

In this example, the complex logic is split between the ParentComponent and the

ChildComponent, reducing the Change detection [7] scope and improving performance.

6. Avoiding Unnecessary DOM Manipulations

Frequent and unnecessary DOM manipulations can degrade performance. Directives should be designed to

minimize DOM manipulations by leveraging Angular [1]’s built-in features and best practices. For example,

instead of directly manipulating the DOM within a directive, consider using Angular [1]’s built-in structural

directives like ngIf and ngFor to add or remove elements from the DOM conditionally.

// Example: Breaking Down Complex

Components

import { Component, Input } from

'@angular/core';

@Component({

selector: 'app-parent',

template: `

<app-child

[childData]="data"></app-child>

`

})

export class ParentComponent {

data: string = 'Parent Data';

}

@Component({

selector: 'app-child',

template: `<div>{{ childData }}</div>`

})

export class ChildComponent {

@Input() childData: string;

}

// Clean up resources to prevent

memory leaks

console.log('Component destroyed');

}

}

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

60

In this example, ngIf and ngFor are used to conditionally display elements and iterate over a list, respectively,

reducing the need for manual DOM manipulations and ensuring more efficient rendering.

Leveraging Angular [1]'s Reactive Forms

Angular [1]’s reactive forms provide a powerful and efficient way to manage form inputs, validation, and

submission. Reactive forms are more performant than template-driven ones because they use an explicit and

immutable approach to managing form states.

@Component({

selector: 'app-reactive-form',

template: `

<form [formGroup]="form">

<label>

Name:

<input formControlName="name">

</label>

<button

type="submit">Submit</button>

</form>

<div *ngIf="form.valid">Form is

valid!</div>

`

})

export class ReactiveFormComponent

implements OnInit {

form: FormGroup;

constructor(private fb: FormBuilder) {}

ngOnInit() {

this.form = this.fb.group({

name: ['']

});

}

}

// Example: Using Reactive Forms

import { Component, OnInit } from

'@angular/core';

import { FormBuilder, FormGroup } from

'@angular/forms';

// Example: Avoiding Unnecessary DOM

Manipulations

import { Component } from

'@angular/core';

@Component({

selector: 'app-structural',

template: `

<div *ngIf="isVisible">This is

conditionally visible</div>

<li *ngFor="let item of items">{{

item }}

`

})

export class StructuralComponent {

isVisible = true;

items = ['Item 1', 'Item 2', 'Item 3'];

}

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

61

In this example, the ReactiveFormComponent uses Angular [1]’s reactive forms to manage the form state. This

approach ensures that the form state is managed more predictably and efficiently, reducing unnecessary re-

renders and enhancing performance.

● Lazy Loading and Code Splitting

Lazy loading and code splitting are advanced optimization techniques in Angular [1] applications that enhance

performance by reducing initial load times and improving responsiveness. Lazy loading leverages Angular [1]'s

routing mechanism to load non-essential modules only when required, thereby minimizing the initial bundle size

and speeding up the application's initial render. This is achieved by dynamically configuring routes to load

modules using Angular [1]'s loadChildren syntax. Code splitting, often facilitated by modern build tools like

Webpack, breaks the application into smaller, asynchronously loaded chunks based on usage patterns. This

means that only the necessary code for the current view is fetched and executed, reducing unnecessary resource

consumption and improving application performance. Together, these techniques optimize resource utilization,

decrease network load, and make large-scale applications more maintainable and scalable by isolating features

and dependencies into distinct, on-demand modules. This strategic loading approach ensures a smoother, faster

user experience and a more efficient development workflow.

● Efficient Use of Pipes and Expressions

Efficient use of pipes and expressions [8] is critical for optimizing Angular [1] application performance by

minimizing unnecessary calculations and updates. Pipes transform data in templates and can be either pure or

impure. Pure pipes are highly efficient as they execute only when input data changes, making them suitable for

most scenarios. Impure pipes, on the other hand, run on every Change detection [7] cycle, which can lead to

performance bottlenecks if used excessively. Therefore, it's important to use impure pipes sparingly. Placing

complex logic within Angular [1] expressions can degrade performance, as these expressions are evaluated

frequently during Change detection [7]. Instead, move complex logic to component classes or services where it

can be managed more efficiently. This approach optimizes the performance and keeps the templates clean and

focused on data presentation. By strategically using pure pipes and minimizing complex expressions in

templates, developers can significantly reduce the computational load and enhance the responsiveness of

Angular [1] applications.

Example

In this example, the PureUppercasePipe is a pure pipe that efficiently transforms a string to uppercase only

when the input changes. The component uses this pipe in the template, ensuring minimal performance impact.

export class MyComponent {

message: string = 'hello world';

}

// pure-uppercase.pipe.ts

@Pipe({name: 'pureUppercase', pure:

true})

export class PureUppercasePipe implements

PipeTransform {

transform(value: string): string {

return value.toUpperCase();

}

}

// my-component.component.ts

@Component({

selector: 'app-my-component',

template: `<div>{{ message |

pureUppercase }}</div>`

})

Jani Y Euro. J. Adv. Engg. Tech., 2020, 7(3):53-62

62

CONCLUSION

In this paper, we explored various techniques to optimize the performance of Angular [1] applications, focusing

on efficient use of pipes and expressions, lazy loading and code splitting, optimized component and directive

usage, and efficient Change detection [7]. These strategies collectively enhance Angular [1] applications'

scalability, maintainability, and responsiveness.

Efficient use of pipes and expressions helps to minimize unnecessary calculations and updates. By utilizing pure

pipes and avoiding complex logic within templates, developers can reduce the computational overhead

associated with Change detection [7] cycles. This keeps the templates clean and focused on data presentation,

improving overall application performance.

Lazy loading and code splitting are essential for reducing initial load times and improving application

responsiveness. By loading non-essential modules and components only when needed, these techniques

optimize resource utilization and enhance user experience. Strategic use of route-based and component-based

splitting ensures that applications remain efficient and maintainable as they grow in size and complexity.

Optimized component and directive usage is crucial for maintaining performance in large-scale Angular [1]

applications. Designing reusable and well-encapsulated components, avoiding complex logic in templates, and

implementing efficient directives help to streamline DOM interactions and reduce unnecessary updates.

Leveraging Angular [1]'s lifecycle hooks and minimizing Change detection [7] impact further improve

performance.

Efficient Change detection [7] is fundamental to Angular [1]'s performance. Adopting the OnPush Change

detection [7] strategy, using immutable data structures, and manually detaching and reattaching change detectors

where appropriate can significantly reduce the computational load. These practices ensure the application

remains responsive and performs well even as it scales.

By implementing these best practices, developers can create Angular [1] applications that are not only high-

performing but also scalable and maintainable. These optimizations provide a smoother and faster user

experience, leading to more robust and efficient web applications.

REFERENCES

[1]. “Angular”. https://angular.dev/.

[2]. Authors, “AngularJS in the Wild: A Survey with 460 Developers | Request PDF”.

https://www.researchgate.net/publication/30 9368617_AngularJS_in_the_Wild_A_Surve

y_with_460_Developers.

[3]. “Performance Tuning Angular [1] Apps – From 0 to 100 (live talk)”.

https://christianlydemann.com/perfor mance-tuning-angular-apps-from-0-to-100-li ve-talk/

[4]. “Angular Tools for High Performance”. https://blog.angular.io/angular-tools-for-high-performance-

6e10fb9a0f4a? gi=f43f58b49848

[5]. “Dependency Injection in Angular”. https://blog.thoughtram.io/angular/ 2015/05/18/dependency-

injection-in-angular-2.html

[6]. “RxJS concepts for dummies” https://medium.com/@nkchandupatla/reacti ve-programming-and-rxjs-

concepts-in-4-min s-e0b1bb142360

[7]. “Change detection” https://trepo.tuni.fi/bitstream/handle/123456 789/26217/Hakulinen.pdf

[8]. “Angular Performance: Optimizing Expression Re-evaluation with Pure Pipes”

https://blog.bitsrc.io/angular-performanc e-optimizing-expression-re-evaluation- with-pure-pipes-

ff8df36ed478

