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ABSTRACT 

The objective of software bug prediction is to pinpoint which software modules are likely to contain bugs by 

leveraging basic project resources before actual testing commences. Early bug prediction is crucial due to the high 

costs associated with fixing bugs later in the process, particularly during the testing phase. Various techniques and 

methodologies, including widely used machine learning approaches, are employed to develop these prediction 

models due to their accuracy in delivering results and analyses. Consequently, I have conducted a review of 

existing literature on software bug prediction and machine learning to better comprehend the model construction 

process. My review not only examines the machine learning techniques utilized by previous researchers but also 

evaluates the datasets, metrics, and performance measures employed in model development. In my study, I 

analyzed 31 key studies and identified six distinct machine learning techniques. I found that two public datasets 

are commonly used, and that object-oriented metrics are frequently selected for building the prediction model. 

Performance is typically assessed using both graphical and numerical measures. My findings confirm that machine 

learning is effective in predicting bugs, although applications in this field are currently limited. The construction of 

prediction models presents several challenges, necessitating further research to achieve more definitive outcomes. 

Based on my findings, I also offer recommendations for future research in this area. 
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1. INTRODUCTION 

In the realm of software development, the concept of quality modeling is pivotal, as it directly influences the 

overall quality of the final product. This element of the development lifecycle is critical because it can 

significantly improve the quality of software by facilitating the early detection and resolution of bugs (Al-Jamimi, 

2016). Early bug detection not only aids testers in the strategic allocation of resources but also enables the 

mitigation of bugs prior to software deployment (Xia et al., 2014), increasing the software's value while curbing 

costs, thus leading to more effective software management (Hassan et al., 2018). In today's rapidly evolving 

technological landscape, the complexity of software is accelerating, making testing an integral component of the 

development cycle. Menzies et al. (2010; Wahono, 2015) suggest that the likelihood of discovering bugs through 

predictive methods could surpass that of traditional review processes. 

 Consequently, the field of software bug prediction has become a hub of research activity, drawing scholars from 

various sectors who put forth a plethora of frameworks, models, and techniques for predicting software bugs. 

Efforts to refine these existing methods continue, even as the research field grapples with inherent uncertainties 

and each model comes with its own set of limitations. Machine learning emerges as a popular domain within this 

field, with several algorithms like neural networks, support vector machines, and Bayesian networks deployed for 

bug detection. Practitioners have access to a variety of public datasets, such as those from the PROMISE and 

NASA MDP repositories, which are enriched with metrics like Halstead and McCabe metrics. These tools are 

crucial for assessing the efficacy of proposed models through performance metrics such as the Area Under Curve 

(AUC) or F-Measure. 

The necessity of reviewing empirical studies on machine learning methods within bug prediction is highlighted by 

the need for a comprehensive understanding of these techniques. Kamei and Shihab (2016) have contributed to 

this field by summarizing key aspects of bug prediction, and Wahono (2015) has examined the datasets pertinent 

to predictive models. Moreover, the review by Jayanthi and Florence (2017) delves into defect prediction 

techniques, evaluating various software metrics, albeit with certain limitations, including the omission of datasets 

and performance evaluation methods used. Prasad and Sasikala (2019) also reviewed software defect prediction 

techniques without detailing the software metrics or performance measures. 
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My study seeks to cover multiple facets of software bug prediction, with the goal to synthesize, scrutinize, and 

appraise the machine learning methods employed thus far in the discipline. I will examine the datasets applied to 

the models, the software metrics typically employed, and the measures used to gauge model performance. By 

doing so, I aim to identify efficacious techniques and methods applicable for future investigations. The structure 

of my paper is as follows: Section 2 discusses my methodological approach and defines my research questions; 

Section 3 presents my findings; Section 4 offers an overview of bug prediction models and enumerates the 

challenges identified in previous studies; Section 5 acknowledges the limitations of my study; and Section 6 wraps 

up my discussion with conclusions and avenues for future research. 

 

2. PROCEDURE 

The research methodology employed in this study is the Systematic Literature Review (SLR). This method was 

selected to thoroughly examine the body of research concerning software bug prediction. SLR is a recognized 

technique that involves the systematic identification, evaluation, and interpretation of research evidence aimed at 

addressing specific research questions, as outlined by Kitchenham and Charters in 2007. 

 

Research Objective 

To structure our review and evaluation of previous studies, we have formulated research questions based on the 

Population, Intervention, Comparison, Outcomes, and Context (PICOC) criteria as recommended by Kitchenham 

and Charters in 2007. Table 1 outlines the specific criteria of PICOC. 

Table 1:  PICOC Criteria 

Population Software, system, application, information system 

Intervention 
Software bug prediction, software defect prediction, software 

fault prediction, error-prone, bug-prone, techniques 

Comparison Not available 

Outcomes Positive bug prediction techniques  

Context  Small and large datasets, studies in academy and industry 

The objective of this review is to assess and synthesize the experimental evidence collected from past studies on 

the application of machine learning techniques in bug prediction models. The research questions to be addressed 

in this Systematic Literature Review (SLR) are detailed as follows: 

[1]. RQ1 - Which datasets are frequently used for software bug prediction?  

[2]. RQ2 - What kind of machine learning techniques that have been selected for prediction model?  

[3]. RQ3 - Which metrics are frequently used for software bug prediction?  

[4]. RQ4 - Which performance measures are used for software bug prediction? 

 

Review Process: 

The methodology for sourcing relevant studies involved selecting digital repositories, crafting a search string, 

conducting a preliminary search, and extracting a primary list of relevant studies from the repositories that 

matched the search criteria. The chosen digital repositories for conducting the search were: 

[1]. ScienceDirect 

[2]. Google Scholar 

[3]. SpringerLink 

[4]. IEEE Xplore 

An exhaustive search method was employed, justified by the relatively small number of primary studies and an 

even smaller subset focusing on empirical research. The search string—a critical tool for retrieving relevant 

studies—is crafted by combining various terms and operators. It is designed to maximize the retrieval of pertinent 

studies. The steps for constructing the search string included: 

[1]. Analyzing the research questions with PICOC criteria to identify key search terms. 

[2]. Finding significant terms in titles, abstracts, and keywords. 

[3]. Considering alternative terminologies for the search terms. 

[4]. Applying Boolean operators ("and/or") to structure the search string 

The finalized search string was: 

Software and (Bug or Fault or Defect) and (Proneness or Prediction) and (Machine Learning or Neural 

Network or Bayesian Network or Decision Tree or Support Vector Machine or Random Forest) 

  

This search string was utilized across the selected digital databases, with the search confined to the period 

from 2014 to 2020. This time frame was chosen to focus on the most recent applications of machine learning 

techniques in research.  

  

To refine the search results, inclusion and exclusion criteria were established as follows: 
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Inclusion Criteria: 

[1]. Studies that analyze software bug prediction models using machine learning. 

[2]. Research comparing the performance of different bug prediction models. 

[3]. Empirically based studies. 

[4]. Studies published in Q1 and Q2 journals. 

[5]. Studies written in English. 

  

Exclusion Criteria: 

[1]. Studies not related to software bug prediction using machine learning. 

[2]. Research lacking a discussion on the performance of bug prediction models. 

[3]. Non-empirical studies. 

[4]. Studies not published in Q1 and Q2 journals. 

[5]. Non-English studies. 

 

From the initial pool of 1,452 studies gathered from the four repositories, titles and abstracts were screened to 

exclude irrelevant studies, reducing the number to 213. These were further scrutinized using the inclusion and 

exclusion criteria, ultimately narrowing the field to 31 relevant studies. Table 2 in the document details the 

distribution of these studies across the different digital repositories. 

 
Data Extraction  

The primary studies sourced from the repositories are essential for addressing the research questions in this SLR. 

A data extraction method was developed to collect necessary information from these studies to respond to the 

research questions effectively. Table 3 details the characteristics utilized for answering the research questions, 

while Table 4 illustrates the alignment between the main studies and the research questions, indicating whether the 

studies provided answers to the questions. 

 
 

RESULT 

Data Sets 

Datasets are collections tailored for specific problems in certain domains. Publicly available datasets like 

PROMISE and NASA Metrics Data Program are crucial for developing bug prediction models, yet finding 

standard datasets from organizations is challenging. Pan et al. (2019) addressed public dataset quality issues by 

creating the Simplified PROMISE Source Code (SPSC) dataset. Researchers use a variety of datasets within 

different frameworks, making assessments challenging. The PROMISE and NASA datasets are the most 

employed, featured in 13 studies each. PROMISE provides long-term storage for software engineering data, while 

NASA MDP offers data on 13 original projects, both aiding predictive model development. Other datasets include 

AEEM, used in three studies, and relink, used in two, along with datasets from Java, Git, Code4Bench, and 

Android projects, illustrating the range of data sources in software bug prediction research. 

 

Machine learning Techniques 

 Many techniques for software bug prediction are presented in the literature and based from the 31 studies, we 

classified the six most used techniques in software bug prediction. 
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Figure 1: Distribution on Software Bug Datasets Figure 2: Distribution on machine learning techniques 

   

 

 
Figure 2 illustrates the methods and distribution of studies on bug prediction modeling techniques. Although 

numerous studies evaluate these techniques, no consensus exists on the optimal method when viewed individually. 

The primary techniques include Bayesian Network (BN), Neural Network (NN), Support Vector Machine (SVM), 

Clustering, Feature Selection (FS), and Ensemble Learning (EL), with Neural Networks being most prevalent. 

Arar and Ayan (2015) highlighted challenges with NN due to parameter selection difficulties, suggesting a 

combination of ANN with the Artificial Bee Colony (ABC) algorithm to optimize parameters. Miholca et al. 

(2018) also developed a framework that merges ANN with gradual relational association rules for identifying 

defective software entities. 
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Software Metrics  

Software metrics serve as crucial independent variables for predicting bug proneness, as showcased in Figures 3 

and 4, which detail the type and usage frequency of these metrics in primary studies. Key metrics include McCabe 

metrics, introduced in 1976, which measure complexities like Cyclomatic, Essential, and Design Complexity. Line 

Of Code (LOC) metrics, evaluating aspects such as lines, comments, and their combinations, are used in half of 

the studies and are most effective when combined with other metrics. Other widely used metrics are Halstead 

metrics, CK Metrics Suite for object-oriented characteristics, QMOOD metrics for assessing design properties, 

and Martin’s metrics for evaluating design quality. 

 
Figure 3: Type of metrics 

  

Figure 4: Distribution of software metrics Figure 5: Distribution of performance measures 

                       

VALIDITY 

The purpose of this study is to analyze the past studies on software bug prediction using the machine learning 

techniques. Most of the studies have a huge range of datasets, but I cannot be sure whether these datasets represent 

the bug prediction scenarios or not. For this study, I did not resort to manual reading of titles of all published 

papers in journal during the searching stage. In fact, I used the search string that I had constructed earlier to find 

the relevant studies on bug prediction. I have search as many studies as I could in accordance to inclusion and 

exclusion criteria. However, there is a likelihood that I had overlooked other proper studies. Also, this review did 

not include the studies from conference proceedings since I only focused on papers from the primary journals. 

Therefore, it had limited other machine learning techniques for my review. The final concern is about the 

researcher bias, where they have the tendency to confirm that the written information was true. 

 

CONCLUSION 

In this study, I conducted a review so that Icould analyze and evaluate the performance of software bug prediction 

model using machine learning techniques. After a detailed investigation followed by an orderly step, I identified 

31 main studies within the period of 2014 to 2020. I summarized the studies based on the datasets, machine 

learning techniques, software metrics and performance evaluation measurements. The main findings that I have 

gotten from the main studies are summarized as below: [1]. NASA MDP and PROMISE repositories were the 

most frequently used dataset in the past literature [2]. BN, EL, FS, NN, Clustering and SVM were the machine 



Panda KC                                                           Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42 

___________________________________________________________________________ 

41 

 

 

learning techniques that I have identified and the most widely used technique for bug prediction model were NN 

and BN [3]. CK Metrics Suite was found to be the most widely chosen as independent variables in the past 

literature. CBO, RFC and LOC were found to be the most useful metrics in bug prediction domain [4]. AUC, 

precision, recall, F-Measure and accuracy are the most frequently used performance measures in the main studies 

The following are the recommendations for future research on software bug prediction using machine learning 

techniques: [5]. There are a few studies that adopt the software bug prediction for agile development [6]. There are 

a few studies that improve the performance of bug prediction models through integration with other algorithms 

[7]. There are few studies that proposed an approach to make the models more informative 
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