
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2020, 7(11):36-42

Research Article ISSN: 2394-658X

36

Machine Learning Methods for Predicting Software Bugs

Khirod Chandra Panda

Asurion Insurance, USA

Email id - khirodpanda4bank@gmail.com, Orcid id: 0009-0008-4992-3873

ABSTRACT

The objective of software bug prediction is to pinpoint which software modules are likely to contain bugs by

leveraging basic project resources before actual testing commences. Early bug prediction is crucial due to the high

costs associated with fixing bugs later in the process, particularly during the testing phase. Various techniques and

methodologies, including widely used machine learning approaches, are employed to develop these prediction

models due to their accuracy in delivering results and analyses. Consequently, I have conducted a review of

existing literature on software bug prediction and machine learning to better comprehend the model construction

process. My review not only examines the machine learning techniques utilized by previous researchers but also

evaluates the datasets, metrics, and performance measures employed in model development. In my study, I

analyzed 31 key studies and identified six distinct machine learning techniques. I found that two public datasets

are commonly used, and that object-oriented metrics are frequently selected for building the prediction model.

Performance is typically assessed using both graphical and numerical measures. My findings confirm that machine

learning is effective in predicting bugs, although applications in this field are currently limited. The construction of

prediction models presents several challenges, necessitating further research to achieve more definitive outcomes.

Based on my findings, I also offer recommendations for future research in this area.

Keywords: Anomaly Detection; Data Mining; Time Series Data; Machine Learning Techniques.

1. INTRODUCTION

In the realm of software development, the concept of quality modeling is pivotal, as it directly influences the

overall quality of the final product. This element of the development lifecycle is critical because it can

significantly improve the quality of software by facilitating the early detection and resolution of bugs (Al-Jamimi,

2016). Early bug detection not only aids testers in the strategic allocation of resources but also enables the

mitigation of bugs prior to software deployment (Xia et al., 2014), increasing the software's value while curbing

costs, thus leading to more effective software management (Hassan et al., 2018). In today's rapidly evolving

technological landscape, the complexity of software is accelerating, making testing an integral component of the

development cycle. Menzies et al. (2010; Wahono, 2015) suggest that the likelihood of discovering bugs through

predictive methods could surpass that of traditional review processes.

 Consequently, the field of software bug prediction has become a hub of research activity, drawing scholars from

various sectors who put forth a plethora of frameworks, models, and techniques for predicting software bugs.

Efforts to refine these existing methods continue, even as the research field grapples with inherent uncertainties

and each model comes with its own set of limitations. Machine learning emerges as a popular domain within this

field, with several algorithms like neural networks, support vector machines, and Bayesian networks deployed for

bug detection. Practitioners have access to a variety of public datasets, such as those from the PROMISE and

NASA MDP repositories, which are enriched with metrics like Halstead and McCabe metrics. These tools are

crucial for assessing the efficacy of proposed models through performance metrics such as the Area Under Curve

(AUC) or F-Measure.

The necessity of reviewing empirical studies on machine learning methods within bug prediction is highlighted by

the need for a comprehensive understanding of these techniques. Kamei and Shihab (2016) have contributed to

this field by summarizing key aspects of bug prediction, and Wahono (2015) has examined the datasets pertinent

to predictive models. Moreover, the review by Jayanthi and Florence (2017) delves into defect prediction

techniques, evaluating various software metrics, albeit with certain limitations, including the omission of datasets

and performance evaluation methods used. Prasad and Sasikala (2019) also reviewed software defect prediction

techniques without detailing the software metrics or performance measures.

https://orcid.org/0009-0008-4992-3873

Panda KC Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42

37

My study seeks to cover multiple facets of software bug prediction, with the goal to synthesize, scrutinize, and

appraise the machine learning methods employed thus far in the discipline. I will examine the datasets applied to

the models, the software metrics typically employed, and the measures used to gauge model performance. By

doing so, I aim to identify efficacious techniques and methods applicable for future investigations. The structure

of my paper is as follows: Section 2 discusses my methodological approach and defines my research questions;

Section 3 presents my findings; Section 4 offers an overview of bug prediction models and enumerates the

challenges identified in previous studies; Section 5 acknowledges the limitations of my study; and Section 6 wraps

up my discussion with conclusions and avenues for future research.

2. PROCEDURE

The research methodology employed in this study is the Systematic Literature Review (SLR). This method was

selected to thoroughly examine the body of research concerning software bug prediction. SLR is a recognized

technique that involves the systematic identification, evaluation, and interpretation of research evidence aimed at

addressing specific research questions, as outlined by Kitchenham and Charters in 2007.

Research Objective

To structure our review and evaluation of previous studies, we have formulated research questions based on the

Population, Intervention, Comparison, Outcomes, and Context (PICOC) criteria as recommended by Kitchenham

and Charters in 2007. Table 1 outlines the specific criteria of PICOC.

Table 1: PICOC Criteria

Population Software, system, application, information system

Intervention
Software bug prediction, software defect prediction, software

fault prediction, error-prone, bug-prone, techniques

Comparison Not available

Outcomes Positive bug prediction techniques

Context Small and large datasets, studies in academy and industry

The objective of this review is to assess and synthesize the experimental evidence collected from past studies on

the application of machine learning techniques in bug prediction models. The research questions to be addressed

in this Systematic Literature Review (SLR) are detailed as follows:

[1]. RQ1 - Which datasets are frequently used for software bug prediction?

[2]. RQ2 - What kind of machine learning techniques that have been selected for prediction model?

[3]. RQ3 - Which metrics are frequently used for software bug prediction?

[4]. RQ4 - Which performance measures are used for software bug prediction?

Review Process:

The methodology for sourcing relevant studies involved selecting digital repositories, crafting a search string,

conducting a preliminary search, and extracting a primary list of relevant studies from the repositories that

matched the search criteria. The chosen digital repositories for conducting the search were:

[1]. ScienceDirect

[2]. Google Scholar

[3]. SpringerLink

[4]. IEEE Xplore

An exhaustive search method was employed, justified by the relatively small number of primary studies and an

even smaller subset focusing on empirical research. The search string—a critical tool for retrieving relevant

studies—is crafted by combining various terms and operators. It is designed to maximize the retrieval of pertinent

studies. The steps for constructing the search string included:

[1]. Analyzing the research questions with PICOC criteria to identify key search terms.

[2]. Finding significant terms in titles, abstracts, and keywords.

[3]. Considering alternative terminologies for the search terms.

[4]. Applying Boolean operators ("and/or") to structure the search string

The finalized search string was:

Software and (Bug or Fault or Defect) and (Proneness or Prediction) and (Machine Learning or Neural

Network or Bayesian Network or Decision Tree or Support Vector Machine or Random Forest)

This search string was utilized across the selected digital databases, with the search confined to the period

from 2014 to 2020. This time frame was chosen to focus on the most recent applications of machine learning

techniques in research.

To refine the search results, inclusion and exclusion criteria were established as follows:

Panda KC Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42

38

Inclusion Criteria:

[1]. Studies that analyze software bug prediction models using machine learning.

[2]. Research comparing the performance of different bug prediction models.

[3]. Empirically based studies.

[4]. Studies published in Q1 and Q2 journals.

[5]. Studies written in English.

Exclusion Criteria:

[1]. Studies not related to software bug prediction using machine learning.

[2]. Research lacking a discussion on the performance of bug prediction models.

[3]. Non-empirical studies.

[4]. Studies not published in Q1 and Q2 journals.

[5]. Non-English studies.

From the initial pool of 1,452 studies gathered from the four repositories, titles and abstracts were screened to

exclude irrelevant studies, reducing the number to 213. These were further scrutinized using the inclusion and

exclusion criteria, ultimately narrowing the field to 31 relevant studies. Table 2 in the document details the

distribution of these studies across the different digital repositories.

Data Extraction

The primary studies sourced from the repositories are essential for addressing the research questions in this SLR.

A data extraction method was developed to collect necessary information from these studies to respond to the

research questions effectively. Table 3 details the characteristics utilized for answering the research questions,

while Table 4 illustrates the alignment between the main studies and the research questions, indicating whether the

studies provided answers to the questions.

RESULT

Data Sets

Datasets are collections tailored for specific problems in certain domains. Publicly available datasets like

PROMISE and NASA Metrics Data Program are crucial for developing bug prediction models, yet finding

standard datasets from organizations is challenging. Pan et al. (2019) addressed public dataset quality issues by

creating the Simplified PROMISE Source Code (SPSC) dataset. Researchers use a variety of datasets within

different frameworks, making assessments challenging. The PROMISE and NASA datasets are the most

employed, featured in 13 studies each. PROMISE provides long-term storage for software engineering data, while

NASA MDP offers data on 13 original projects, both aiding predictive model development. Other datasets include

AEEM, used in three studies, and relink, used in two, along with datasets from Java, Git, Code4Bench, and

Android projects, illustrating the range of data sources in software bug prediction research.

Machine learning Techniques

 Many techniques for software bug prediction are presented in the literature and based from the 31 studies, we

classified the six most used techniques in software bug prediction.

Panda KC Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42

39

Figure 1: Distribution on Software Bug Datasets Figure 2: Distribution on machine learning techniques

Figure 2 illustrates the methods and distribution of studies on bug prediction modeling techniques. Although

numerous studies evaluate these techniques, no consensus exists on the optimal method when viewed individually.

The primary techniques include Bayesian Network (BN), Neural Network (NN), Support Vector Machine (SVM),

Clustering, Feature Selection (FS), and Ensemble Learning (EL), with Neural Networks being most prevalent.

Arar and Ayan (2015) highlighted challenges with NN due to parameter selection difficulties, suggesting a

combination of ANN with the Artificial Bee Colony (ABC) algorithm to optimize parameters. Miholca et al.

(2018) also developed a framework that merges ANN with gradual relational association rules for identifying

defective software entities.

Panda KC Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42

40

Software Metrics

Software metrics serve as crucial independent variables for predicting bug proneness, as showcased in Figures 3

and 4, which detail the type and usage frequency of these metrics in primary studies. Key metrics include McCabe

metrics, introduced in 1976, which measure complexities like Cyclomatic, Essential, and Design Complexity. Line

Of Code (LOC) metrics, evaluating aspects such as lines, comments, and their combinations, are used in half of

the studies and are most effective when combined with other metrics. Other widely used metrics are Halstead

metrics, CK Metrics Suite for object-oriented characteristics, QMOOD metrics for assessing design properties,

and Martin’s metrics for evaluating design quality.

Figure 3: Type of metrics

Figure 4: Distribution of software metrics Figure 5: Distribution of performance measures

VALIDITY

The purpose of this study is to analyze the past studies on software bug prediction using the machine learning

techniques. Most of the studies have a huge range of datasets, but I cannot be sure whether these datasets represent

the bug prediction scenarios or not. For this study, I did not resort to manual reading of titles of all published

papers in journal during the searching stage. In fact, I used the search string that I had constructed earlier to find

the relevant studies on bug prediction. I have search as many studies as I could in accordance to inclusion and

exclusion criteria. However, there is a likelihood that I had overlooked other proper studies. Also, this review did

not include the studies from conference proceedings since I only focused on papers from the primary journals.

Therefore, it had limited other machine learning techniques for my review. The final concern is about the

researcher bias, where they have the tendency to confirm that the written information was true.

CONCLUSION

In this study, I conducted a review so that Icould analyze and evaluate the performance of software bug prediction

model using machine learning techniques. After a detailed investigation followed by an orderly step, I identified

31 main studies within the period of 2014 to 2020. I summarized the studies based on the datasets, machine

learning techniques, software metrics and performance evaluation measurements. The main findings that I have

gotten from the main studies are summarized as below: [1]. NASA MDP and PROMISE repositories were the

most frequently used dataset in the past literature [2]. BN, EL, FS, NN, Clustering and SVM were the machine

Panda KC Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42

41

learning techniques that I have identified and the most widely used technique for bug prediction model were NN

and BN [3]. CK Metrics Suite was found to be the most widely chosen as independent variables in the past

literature. CBO, RFC and LOC were found to be the most useful metrics in bug prediction domain [4]. AUC,

precision, recall, F-Measure and accuracy are the most frequently used performance measures in the main studies

The following are the recommendations for future research on software bug prediction using machine learning

techniques: [5]. There are a few studies that adopt the software bug prediction for agile development [6]. There are

a few studies that improve the performance of bug prediction models through integration with other algorithms

[7]. There are few studies that proposed an approach to make the models more informative

REFERENCES

[1]. Andresen, B. H., Casasanta, J. A., Keeney, S. C., Martin, R. C., & Satoh, Y. (1994). U.S. Patent No.

5,355,037. Washington, DC: U.S. Patent and Trademark Office.

[2]. Abaei, G., &Selamat, A. (2014). Increasing the accuracy of software fault prediction using majority

ranking fuzzy clustering. International Journal of Software Innovation (IJSI), 2(4), 60-71.

[3]. Abaei, G., Selamat, A., & Fujita, H. (2015). An empirical study based on semi-supervised hybrid self-

organizing map for software fault prediction. Knowledge-Based Systems, 74, 28-39.

[4]. Al-Jamimi, H. A. (2016, August). Toward comprehensible software defect prediction models using fuzzy

logic. In 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)

(pp. 127-130). IEEE.

[5]. Arar, Ö. F., & Ayan, K. (2015). Software defect prediction using cost-sensitive neural network. Applied

Soft Computing, 33, 263-277.

[6]. Bansiya, J. & Davis, C. (2002). A hierarchical model for object-oriented design quality assessment. IEEE

Transactions on Software Engineering, 28(1), 4-17. Boucher,

[7]. A., & Badri, M. (2018). Software metrics thresholds calculation techniques to predict faultproneness: An

empirical comparison. Information and Software Technology, 96, 38-67.

[8]. Chidamber, S. &Kemerer, C. (1994). A metrics suite for object-oriented design. IEEE Transactions of

Software Engineering, 20(6), 476-493.

[9]. Couto, C., Pires, P., Valente, M. T., Bigonha, R. S. & Anquetil, N. (2014). Predicting software defects with

causality tests. Journal of Systems and Software, 93, 24-41.

[10]. D'Ambros, M., Lanza, M., &Robbes, R. (2010, May). An extensive comparison of bug prediction

approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010) (pp. 31-

41). IEEE

[11]. Dong, F., Wang, J., Li, Q., Xu, G., & Zhang, S. (2018). Defect prediction in android binary executables

using deep neural network. Wireless Personal Communications, 102(3), 2261-2285.

[12]. Erturk, E., &Sezer, E. A. (2015). A comparison of some soft computing methods for software fault

prediction. Expert systems with applications, 42(4), 1872-1879.

[13]. Geng, W. (2018). Cognitive Deep Neural Networks prediction method for software fault tendency module

based on Bound Particle Swarm Optimization. Cognitive Systems Research, 52, 12-20.

[14]. Halstead, M. H. (1977). Elements of software science (Vol. 7, p. 127). New York: Elsevier. Hassan, F.,

Farhan, S., Fahiem, M. A., & Tauseef, H. (2018). A Review on Machine Learning Techniques for Software

Defect Prediction. Technical Journal, 23(02), 63-71.

[15]. Hua, W. E. I., Chun, S. H. A. N., Changzhen, H. U., ZHANG, Y., & Xiao, Y. U. (2019). Software Defect

Prediction via Deep Belief Network. Chinese Journal of Electronics, 28(5), 925-932.

[16]. Jacob, S. G., & Raju, G. (2017). Software defect prediction in large space systems through hybrid feature

selection and classification. Int. Arab J. Inf. Technol., 14(2), 208-214.

[17]. Jakhar, A. K., & Rajnish, K. (2018). Software fault prediction with data mining techniques by using feature

selection based models. International Journal on Electrical Engineering and Informatics, 10(3), 447-465.

[18]. Jayanthi, R. F., & Florence, L. (2017). A review on software defect prediction techniques using product

metrics. International Journal of Database Theory and Application, 10(1), 163-174.

[19]. Ji, H., Huang, S., Wu, Y., Hui, Z., & Zheng, C. (2019). A new weighted naive Bayes method based on

information diffusion for software defect prediction. Software Quality Journal, 27(3), 923-968.

[20]. Jin, C., &Jin, S. W. (2015). Prediction approach of software fault-proneness based on hybrid artificial

neural network and quantum particle swarm optimization. Applied Soft Computing, 35, 717-725.

[21]. Kalsoom, A., Maqsood, M., Ghazanfar, M. A., Aadil, F., & Rho, S. (2018). A dimensionality reduction-

based efficient software fault prediction using Fisher linear discriminant analysis (FLDA). The Journal of

Supercomputing, 74(9), 4568-4602.

[22]. Kamei, Y., & Shihab, E. (2016, March). Defect prediction: Accomplishments and future challenges. In

2016 IEEE 23rd international conference on software analysis, evolution and reengineering (SANER) (Vol.

5, pp. 33-45). IEEE.

Panda KC Euro. J. Adv. Engg. Tech., 2020, 7(11):36-42

42

[23]. Kaur, G. & Sharma, D. (2015). A study on Robert C. Martin’s metrics for packet categorization using fuzzy

logic. International Journal of Hybrid Information Technology, 8(12), 215-224.

[24]. Kazienko, P., Lughofer, E., &Trawiński, B. (2013). Hybrid and ensemble methods in machine learning J.

UCS special issue. J UniversComput Sci, 19(4), 457-461.

