
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2020, 7(10):61-65

Research Article ISSN: 2394 - 658X

61

Exploring Diverse Approaches to Micro-Frontends Integration

with React

Bhargav Bachina

ABSTRACT

This paper introduces the concept of Micro-Frontends as a methodology to address the challenges of

maintaining and collaborating on large-scale projects. As projects expand in size and complexity, Micro-

Frontends offers a strategy to break down monolithic applications into smaller, more manageable components.

By dividing projects into smaller teams and components, organizations can improve team performance and

accelerate product delivery. The paper outlines six distinct approaches to implementing Micro-Frontends,

providing a glimpse into each method's high-level architecture. Future discussions will explore these

approaches in greater detail, offering practical guidance for their implementation in diverse technological

environments.

Key words: Web Development, Programming, Software Development, JavaScript, React

__

INTRODUCTION

I have been working and researching Micro-Frontends for a while now and I have enough information to share

it with the world. As projects get bigger and bigger it is very difficult to maintain and collaborate with these

projects. As projects get bigger, their build time increases, unit tests increase, team size increases, almost

everything gets bigger and gets to the stage where we can’t maintain them. So, it’s always better to have smaller

projects and smaller teams for the teams’ performance and deliver the products faster to the end-user. But

sometimes your product or your app has so many features that maintaining smaller teams and projects is out of

your hands. You can have separate teams for each feature but managing teams, merging all features into one

repo, and resolving conflicts, etc. all these are tedious tasks that we can avoid with Micro Frontends.

Micro-Frontends are not a framework or library. This is the methodology where we can divide our fat apps into

smaller and maintainable apps and design some kind of orchestration to place these apps in the browser window

so that end-users see them as a single app. There are six different approaches that we could implement. Here are

the 6 ways to do this irrespective of technology. I am going to do a separate post for each of these with full

implementation. We will go through just the high-level architecture of these for now.

• Webpack Module Federation

• Iframes

• Through NGINX

• sWeb Components

• React Component Libraries

• Monorepos

• Customized Orchestrator

Bachina B Euro. J. Adv. Engg. Tech., 2020, 7(10):61-65

62

WEBPACK MODULE FEDERATION

Multiple separate builds should form a single application. These separate builds should not have dependencies

between each other, so they can be developed and deployed individually.

Figure 1: Webpack Module Federation

There are local and remote modules. Local modules are nothing, but the current build modules and remote

builds are the builds that should be imported into the current App or build.

Each build acts as a container and consumes other builds as containers. This way each build can access any

other exposed module by loading it from its container. It is possible to nest a container. Containers can use

modules from other containers. Circular dependencies between containers are also possible.

You can find more here:

https://webpack.js.org/concepts/module-federation/

IFRAMES

Iframes are the HTML documents that can be embedded inside another HTML document. Here is an example of

Iframe. You can place whatever source you want in the iframe tag, and it is rendered based on the width and

height of the frame in the parent document.

https://gist.github.com/bbachi/4d45fb94ad2569b1d5583567350ab0b4#file-iframe-html

In the above example, I am running two React applications on ports 3000 and 3001 respectively and are the

sources for the iframes defined in the above document. When you load this in the browser you can see two side

by side in the same window as below. This is a simple example, but I am going to post a better example than this

in the upcoming posts.

Figure 2: Micro Frontends with Iframes

This kind of approach better suits the project where all the functionality resides on the same page without any

navigation and the communication happens through the Window object.

THROUGH NGINX

https://webpack.js.org/concepts/module-federation/
https://gist.github.com/bbachi/4d45fb94ad2569b1d5583567350ab0b4#file-iframe-html

Bachina B Euro. J. Adv. Engg. Tech., 2020, 7(10):61-65

63

The above approach doesn’t suit when there are navigation and routing involved in the project. You can have this

but there should be another shell project for navigation. NGINX can be used as a web server or reverse proxy to

serve static content. We can use NGINX to route the appropriate Micro App based on the context path. If we look

at the following diagram, we have a NGINX web server in between to serve each Micro Frontend based on the

context path or routing, for example, /users load the Micro Users, /customers loads the Micro Customers, and so

on.

Figure 3: NGINX routing different apps based on context path

Here is the sample NGINX configuration file. We define block directive location for each Micro Frontend and load

appropriate app based on the location path or context root.

https://gist.github.com/bbachi/698a8512667b3d3fa6ec2f0034e8f14b#file-nginx-conf

This kind of approach better suits the project where there is navigation or routing involved and when the app is

divided into multiple apps based on the features. This communication happens through the React-Redux store and

local storage as shown in the following diagram. As you navigate from one app to another app all the state of the

app is transferred through some kind of state management tool and local storage.

Figure 4: Communication between Micro Frontends

The disadvantage of this approach is that when we switch apps every time there is a page refresh. You might

maintain some shared components on each app such as header and footer to maintain the same layout.

WEB COMPONENTS

Web components are the combination of different technologies that allow you to create reusable components on

the web. It promotes the DRY principle. It mainly consists of three technologies Custom elements which allow

you to create custom elements which can be used where you want on the web page, Shadow DOM which allows

you to run your code in a separate DOM other than the main DOM that provides encapsulation, HTML templates

which allow you write markup templates that can be used multiple times. You can get more information on this

link: https://developer.mozilla.org/en-US/docs/Web/API/Web_components.

https://gist.github.com/bbachi/698a8512667b3d3fa6ec2f0034e8f14b#file-nginx-conf
https://developer.mozilla.org/en-US/docs/Web/API/Web_components

Bachina B Euro. J. Adv. Engg. Tech., 2020, 7(10):61-65

64

Figure 5: Micro Frontends with web components

Here is an example of a custom component. With this approach, we can convert each micro app into a custom

component and place it accordingly on the page.<my-message message="Hello, How are you!!"></my-message>

All the browsers don’t support these web components. You need to add polyfills for unsupported versions.

REACT COMPONENT LIBRARIES

In this approach, each Micro-Frontend can be a React library that can be pushed as a node module into some

private repository. We have a shell app to pull that repo wherever we need with lazy loading (if it’s Angular) or

dynamic imports.

If you look at the below diagram, there are three Micro applications which can be converted to three libraries and

pushed into the repository.

Figure 6: Micro Frontends with React Libraries

We can push our project as a node module with this command npm push app1We can import these libraries

with dynamic imports as below.

https://medium.com/bb-tutorials-and-thoughts/7-different-ways-to-implement-micro-frontends-with-react-

907b5e262230

Communication is not a problem here since all the individual libraries end up in the same project or application.

MONOREPOS

Monorepo is a software strategy where you can put multiple related projects under one repo. In this way, we don’t

have to push shared code to separate repo as a library or module and pull it for use.

If you look at the below diagram, we have one mono repo that contains all the projects and shared code as well. In this

way, we don’t have to create any separate libraries for the sharable code. All the shared code and actual projects live

in the same repo.

Figure 7: Micro Frontends with Monorepos

Every developer has to check out the whole repo even he just needs one or two folders. Defining pipelines can be

difficult with this approach as all the projects live in the same repo.

CUSTOMIZED ORCHESTRATOR

https://angular.io/api/common/http/HttpErrorResponse#message
https://medium.com/bb-tutorials-and-thoughts/7-different-ways-to-implement-micro-frontends-with-react-907b5e262230
https://medium.com/bb-tutorials-and-thoughts/7-different-ways-to-implement-micro-frontends-with-react-907b5e262230

Bachina B Euro. J. Adv. Engg. Tech., 2020, 7(10):61-65

65

We define plain JavaScript files to orchestrate the entire workflow of these micro-projects. All individual

projects are deployed independently. The orchestrator can load each project based on the URL.

Figure 8: Micro Frontends with Customized Orchestrator

You can define some global namespace and objects in the orchestrator (some_system.js here) for communication.

These global objects are available for all the projects so that you can send data among applications.

CONCLUSION

This paper presents Micro-Frontends as an effective strategy for mitigating the complexities associated with

managing and collaborating on extensive projects. As project scale increases, Micro-Frontends provide a means

to decompose monolithic applications into smaller, more modular elements. By fostering smaller teams and

components, organizations can enhance team productivity and expedite product deployment. The paper

delineates six unique methodologies for deploying Micro-Frontends, offering an overview of their architectural

principles. Future explorations will delve deeper into these methodologies, furnishing actionable insights for

their application across various technological landscapes.

REFERENCES

[1]. React Official Documentation https://react.dev/

[2]. Micro Frontend Article https://micro-frontends.org/

[3]. Official JavaScript Documentation https://developer.mozilla.org/en-US/docs/Web/JavaScript

https://react.dev/
https://micro-frontends.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

