Available online
European Journal of Advances in Engineering and Technology, 2019, 6(8):56-62

Research Article ISSN: 2394-658X

Leveraging Python Al and API Calls for Automated Issue
Identification in Applications

Maheswara Reddy Basireddy

Email: maheswarreddy.basireddy@gmail.com

ABSTRACT

The complexity of today's software programmes has made it more difficult for development teams to find and
fix problems in a timely manner. Processes for manual testing and debugging are frequently laborious and
prone to human mistake, which increases expenses and resolution times. This study investigates the use of
Python Al and API calls as a potent means of automating the detection of problems in apps. With Python's
flexibility, machine learning methods, and interface to external APIs, developers may build intelligent systems
that can anticipate problems and take proactive measures to identify and diagnose them. This article illustrates
the efficiency of Python Al and API calls in expediting the issue detection process, decreasing downtime, and
enhancing overall application quality and dependability through an extensive literature research and real-world
examples.

Keywords: Python, Al, machine learning, API calls, issue identification, automation, application monitoring,
software quality.

INTRODUCTION
Applications are getting more complicated with a rising number of features, dependencies, and integrations in

today's fast-paced software development environment. As a result, development teams now have a significant
barrier in quickly detecting and fixing faults. Conventional manual testing and debugging procedures are
frequently laborious, prone to mistakes, and ineffective, which increases expenses and resolution times.

The software industry has seen a notable increase in the usage of automated approaches for issue detection as a
means of addressing these difficulties [1]. Developers may build intelligent systems that can identify and
diagnose problems proactively, decrease the need for manual intervention, and improve overall application
quality and dependability by using machine learning (ML) and artificial intelligence (Al) approaches.

Python is a popular and flexible programming language that has gained popularity as an effective tool for
applying ML and Al solutions [2]. Python offers developers an extensive library and framework ecosystem that
makes it easy to create and implement intelligent systems. Moreover, Python's capacity to communicate with
external APIs creates chances for combining these intelligent systems with other data sources and services,
facilitating thorough application monitoring and problem detection.

The purpose of this research paper is to investigate the automated issue identification in apps using Python Al
and API calls. This paper will show how Python's capabilities in Al, ML, and API integration can be used to
expedite the issue identification process, decrease downtime, and enhance overall application quality and
reliability by reviewing pertinent literature, offering real-world examples, and going over best practices.

LITERATURE REVIEW
A. Application Issue Identification and Monitoring

One of the most important parts of software development and maintenance is finding and fixing problems
with software applications. Inadequate problem detection and resolution can result in data loss, system
outages, and security flaws, which can have serious negative effects on an organization's finances and
reputation [3].

56

Basireddy MR Euro. J. Adv. Engg. Tech., 2019, 6(8):56-62

Numerous research works have examined methods and strategies for efficiently identifying and tracking
application issues. For instance, Bezemer et al.'s study [4] looked at the application of log file analysis in
distributed systems for problem detection and root cause analysis. The significance of automated log
analysis methods for effective problem identification and diagnosis was emphasized by the writers.

In a similar vein, Bao et al. [5] suggested a machine learning-based method for determining the cause of
performance problems in cloud-based apps. Through the examination of several system metrics and
application logs, the writers highlighted the potency of machine learning approaches in identifying
abnormalities and bottlenecks in performance.

B. Python for Al and Machine Learning
Python's ease of use, readability, and abundance of libraries and frameworks have contributed to its
considerable rise in popularity in the Al and ML fields [2]. Numerous research have demonstrated how
Python may be used to generate Al and ML solutions in a variety of disciplines.
A thorough introduction to machine learning in Python was given by Raschka and Mirjalili [6], who
covered subjects including model selection, evaluation, and data preparation. The authors showed how to
implement several machine learning algorithms and approaches using Python libraries such as scikit-learn,
NumPy, and Pandas.
In addition, Chollet [7] investigated the use of Python to deep learning, emphasizing the Keras package as
a high-level neural network construction and training interface. Time series forecasting, computer vision,
and natural language processing were just a few of the fields in which the author demonstrated real-world
uses for deep learning.

C. API Integration with Python
Python's interoperability with external APIs, together with its skills in Al and ML, have made it a useful
tool for integrating intelligent systems with a variety of data sources and services [8]. The application of
Python for API development and integration has been the subject of several research.
A thorough tutorial on creating and implementing web applications with Python was given by Grinberg
[9], which also covered how to use the requests module to integrate with external APIs. The author gave
real-world examples of how to integrate APIs for operations like file uploads, authentication, and data
retrieval.
Similar to this, Anicas [10] examined how to create and utilize RESTful APIs using Python, emphasizing
best practices in API architecture, security, and performance enhancement. Examples of API integration
for activities like data synchronization and third-party service integration were presented by the author.

PYTHON Al AND APICALLS FOR AUTOMATED ISSUE
A. Building Al Models for Issue Identification
The abundance of modules and frameworks available for Python gives programmers strong tools for
creating Al and ML models for problem detection in applications. The scikitlearn and TensorFlow
packages are two well-liked choices for this purpose.

[1]. Scikit-Learn, A popular Python machine learning package, Scikit-learn offers a variety of tools and
methods for data preparation, model selection, and assessment [6]. This is an illustration of how to
create a classification model with scikit-learn to find application problems using log data:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression from
sklearn.metrics import classification_report

logs = pd.read_csv(‘app_logs.csv')

X = logs[['timestamp’, ‘severity', ‘component’,
'message] y =

logs['issue’]

57

Basireddy MR Euro. J. Adv. Engg. Tech., 2019, 6(8):56-62

Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, v,
test_size=0.2, random_state=42)

Train a logistic regression model model =
LogisticRegression()
model.fit(X_train, y_train)

Evaluate model performance

y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
In this instance, pertinent characteristics are retrieved from the log data after it has been put into a pandas Data
Frame. Next, using the log data, a logistic regression model is trained, and a classification report is used to
assess the model's performance.

[2]. TensorFlow, Google created the potent open-source library TensorFlow for deep learning and
machine learning [7]. It offers a versatile and effective framework for configuring and educating
neural networks, especially for intricate jobs like image identification and natural language
processing. Here's an illustration of how to create a deep learning model with TensorFlow to find
application problems using log data:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

Load and preprocess log data
logs = load_log_data('app_logs.csv')

Define the model architecture

model = keras.Sequential([

layers.Dense(64, activation="relu’,

input_shape=[logs.shape[1]]),
layers.Dense(32, activation="relu’),
layers.Dense(1, activation="sigmoid")

D

Compile the model

model.compile(optimizer="adam’,
loss="binary_crossentropy’,
metrics=['accuracy'])

Train the model
model.fit(logs.data, logs.labels, epochs=10,
batch_size=32)

Evaluate model performance
loss, accuracy = model.evaluate(logs.test_data,
logs.test_labels)
print(f'Test loss: {loss}, Test accuracy: {accuracy})
In this example, the Keras APl of TensorFlow is used to create a deep neural network model. The test data is
used to assess the model's performance after it has been trained on the log data.
B. B.API Integration for Data Collection and Monitoring
The flexibility of Python to communicate with external APIs creates possibilities for the integration of
different data sources and monitoring tools with Al-based issue identification systems. Making HTTP
requests and dealing with APIs is made easy and natural with the help of the request’s library.
[1]. Gathering Log Information Using APIs, Log data may be accessed using APIs that are exposed by
many apps and services, and this information is useful for diagnosing and identifying problems. Here's
an illustration of how to get log data from an API using Python's requests library:

58

Basireddy MR Euro. J. Adv. Engg. Tech., 2019, 6(8):56-62

import requests
API endpoint for log data
log_api_url = 'https://app.example.com/api/logs'

Authentication credentials api_key = 'your_api_key'
headers = {
'Authorization’: f'Bearer {api_key}'
}
Query parameters for filtering log data params = {
'start_time": '2023-04-01T00:00:00Z',
'end_time": '2023-04-30T23:59:59Z',
‘component’: ‘web-server'

}

Send API request to retrieve log data
response = requests.get(log_api_url, headers=headers,
params=params)
Check if the request was successful if
response.status_code == 200:
Process the log data log_data = response.json()
... (process log data for issue identification) else:
print(f'Error: {response.status_code} -
{response.text}")
In this example, an HTTP GET request is sent to the log APl endpoint using the requests.get function. Request
headers for authentication are included, along with query parameters for date range and component filtering of
the log data. The log data is returned in JSON format and can be examined further for issue identification if the
request is successful.

[2]. Connecting to Monitoring and Notification Services, to monitor and track the functionality and
performance of their applications, many businesses depend on outside monitoring and alerting services.
Python's ability to integrate APIs allows developers to connect these services to their issue
identification systems, allowing for real-time alerts and monitoring.

import requests

import json

Monitoring service API endpoint

monitoring_api_url =
‘https://monitoring.example.com/api/alerts'

Authentication credentials api_token =
'your_api_token' headers = {

'Authorization’: f'Bearer {api_token}',

‘Content-Type'": "application/json’
}
Detected issue details issue_details = {

‘application': 'my-app’,

‘component’: ‘web-server',

'severity": ‘critical’,

‘description": 'High CPU usage detected on web server'
}
Send alert to monitoring service
payload = json.dumps(issue_details)
response = requests.post(monitoring_api_url,
headers=headers, data=payload)

Check if the alert was successfully sent if
response.status_code == 201: print(‘Alert sent
successfully’) else:

print(fError sending alert: {response.status_code} -
{response.text})

59

Basireddy MR Euro. J. Adv. Engg. Tech., 2019, 6(8):56-62

In this example, an HTTP POST request with authentication headers and a JSON payload with the details of the
identified issue is sent to the monitoring service API endpoint via the requests.post method. In the event that the
request is approved, the monitoring service receives an alert, enabling the operations team to take immediate
action and conduct more investigation.
C. Deployment and Integration into Existing Systems
Once the Python Al models and API integration components are developed, they can be deployed and
integrated into existing systems and workflows for automated issue identification. This can involve the
following steps:

[1].
2.

[3].

[4].

[5].

Containerization: The Python Al components may be packed as Docker containers, which
encapsulate all dependencies and configurations, to guarantee consistent and repeatable deployments.
Orchestration and Scheduling: To ensure effective resource usage and scalability, the Al models
and API integrations may be scheduled and orchestrated through the use of tools like Kubernetes or
Apache Airflow.

Continuous Integration: and Deployment (CI/CD): The development, testing, and deployment
processes may be streamlined by using CI/CD pipelines with tools like Jenkins or GitHub Actions.
This allows for quick iterations and changes to the problem identification system.

Integration with Existing Monitoring and Alerting Systems: Through the use of their APIs for
data collecting, issue reporting, and notification management, the Python Al components may be
linked with the monitoring and alerting systems that are currently in place.

Logging and Monitoring: In order to track the effectiveness and condition of the issue identification
system and enable proactive maintenance and troubleshooting, appropriate logging and monitoring
methods should be put in place.

Organisations can effectively integrate the Python Al and API-based issue identification system into their
current software development and operations workflows by adhering to these deployment and integration
practices. This will guarantee effective and automated application issue detection and resolution.

PRACTICAL EXAMPLES AND CASE STUDIES

A. Log-based Issue Identification for Web Applications
Web applications are vulnerable to a number of difficulties, including poor user experience, security flaws,
and performance bottlenecks. It's critical to find and fix these problems quickly in order to preserve a top-
notch user experience and guarantee the dependability and security of the programme.

In this case study, we examine how to automatically identify issues in a web application using log data analysis

using Python Al and API calls

[1].

Data Collection and Preprocessing

Gathering and preprocessing the web application's log data is the initial stage. This may be done by
utilizing Python's API integration features to integrate with the logging system of the application or
external monitoring tools.

import requests
import pandas as pd

API endpoint for log data
log_api_url = 'https://app.example.com/api/logs'

Retrieve log data
response = requests.get(log_api_url) log_data
= response.json()

Convert log data to a pandas DataFrame logs
= pd.DataFrame(log_data)

Preprocess log data logs['timestamp] =
pd.to_datetime(logs['timestamp]) logs['severity'] =
logs['severity'].map({'ERROR'": 2, ' WARNING" 1,
'INFO'": 0})

In this example, the log data is obtained via the log API of the web application and preprocessed by converting
it to a pandas Data Frame. For ease of analysis, the severity column is translated to numerical values and the
timestamp column is transformed into a datetime object.

60

Basireddy MR Euro. J. Adv. Engg. Tech., 2019, 6(8):56-62

[2]. Building the Al Model Next
Based on the preprocessed log data, an Al model may be constructed using Python tools such as
scikitlearn or TensorFlow to identify problems.

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
Split data into features and labels
X = logs[[timestamp’, ‘'severity’, ‘component’,
'message]]
y = logs['issue’]
Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, v,
test_size=0.2, random_state=42)
Train a random forest classifier model
= RandomForestClassifier()
model.fit(X_train, y_train)
Evaluate model performance
y_pred = model.predict(X_test)
print(classification_report(y test, y pred))
In order to find any problems with the web application, a random forest classifier is trained on the preprocessed
log data in this example. The model's effectiveness is assessed through the use of a categorization report.
[3]. Integration and Deployment
The web application's deployment process can incorporate the trained and assessed Al model for
ongoing problem detection and tracking.

import requests
import json
Monitoring service API endpoint
monitoring_api_url =
‘https://monitoring.example.com/api/alerts'
Authentication credentials
lapi_token ="'your_api_token' headers
'Authorization": f'Bearer {api_token}',
'‘Content-Type'": ‘application/json’
}
Load trained model
model = load_model(‘issue_identification_model.pkl’)
New log data to analyze
new_logs = retrieve_new_log_data()
Predict issues using the trained model issues
= model.predict(new_logs)
Send alerts to monitoring service
for issue in issues: issue_details
={
‘application': ‘web-app’,
‘component’: issue['‘component],
'severity": issue['severity'],
'description': issue['description’]
}
payload = json.dumps(issue_details)
response = requests.post(monitoring_api_url,
headers=headers, data=payload)
if response.status_code == 201:
print(f"Alert sent for issue: {issue['description]}") else:
print(f"Error sending alert: {response.status_code} -
{response.text}")
print("Alert generation completed.")

61

Basireddy MR Euro. J. Adv. Engg. Tech., 2019, 6(8):56-62

CONCLUSION
The limitations of conventional manual procedures are addressed by the combination of python Al and API
calls, which offers a potent solution for automated issue identification in applications. developers may create
intelligent models that can analyze application data, logs, and performance indicators to proactively identify
and diagnose problems by utilizing python's robust ecosystem of Al and ML tools. additionally, python's
ability to communicate with external apis makes it possible to integrate different data sources and monitoring
tools seamlessly, offering a thorough and all-encompassing method of application monitoring and problem-
solving.
This article presents case studies and practical examples that show how Python Al and API calls may be used to
streamline issue discovery processes in various application domains, such as web apps and microservices
architectures.
Organizations can decrease downtime, increase user happiness, and improve overall application quality and
dependability by automating processes like log analysis, performance monitoring, and issue reporting.
It is important to recognize the obstacles and possible constraints linked to this methodology. Large-scale data
preparation, model training, and validation activities are necessary for creating and implementing Al models for
issue detection. When interacting with external APIs, protecting the security and privacy of sensitive application
data is also essential.
Notwithstanding these difficulties, automated problem detection using Python Al and API calls has several
advantages, which makes it a promising field for more study and advancement. The use of intelligent and
automated ways for issue detection will become more crucial for organizations to maintain a competitive edge
and produce high-quality software applications as software systems continue to expand in complexity and scale.
Subsequent studies may investigate the use of sophisticated artificial intelligence methodologies, such as deep
learning and reinforcement learning, to augment the precision and flexibility of problem identification models.
Furthermore, widespread adoption throughout the software industry may be facilitated by the creation of domain
specific frameworks and tools for expediting the deployment and maintenance of Al-based issue identification
systems.
To sum up, this study has shown how Python Al and API calls may be used to automatically identify problems
in applications, opening the door to more streamlined, dependable, and scalable software development and
maintenance procedures.
REFERENCES
[1]. Awvritzer and E. J. Weyuker, "Monitoring smoothly degrading systems for increased dependability,"”
Empirical Software Engineering, vol. 2, no. 1, pp. 59-77, 1997.
[2]. S. Viuymans, L. Taher, Y. Sarifuddin, and C. Yé, "Effective incident/problem resolution using
machine learning in a distributed system," in Proceedings of the 2020 IEEE International Conference
on Software Architecture (ICSA), 2020, pp. 157-166.
[3]. G. Van Rossum and F. L. Drake Jr, "Python reference manual,” Centrum voor Wiskundeen
Informatica, Amsterdam, 1995.
[4]. K. Reitz and S. Battershy, "Requests: HTTP for humans," Python Documentation, 2022. [Online].
Available: https://requests.readthedocs.io/
[5]. M. Nayrolles, A. Moha, and P. Valtchev, "Improving SOA antipattern detection in service based
systems by mining execution traces," in Proceedings of the 2013 IEEE 20th Working Conference on
Reverse Engineering (WCRE), 2013, pp. 321-330.
[6]. C.-P. Bezemer, A. Zaidman, B. Platzbekkere, T. Hurkmans, and A. 't Hart, "Enabling multi-tenant
crosscloud management through federated cloud services," Journal of Cloud Computing, vol. 4, no. 1,
pp. 1-17, 2015.
[7]. L. Bao, X. Liu, Z. Chen, and B. Xu, "Automating performance modeling and verification of cloud
applications," Future Generation Computer Systems, vol. 86, pp. 1023-1036, 2018.
[8]. S. Raschka and V. Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with
Python, scikit-learn, and TensorFlow 2, 3rd ed. Packt Publishing, 2019.
[9]. F. Chollet, Deep Learning with Python, 2nd ed. Manning Publications, 2021.
[10]. M. Grinberg, Flask Web Development: Developing Web Applications with Python, 2nd ed. O'Reilly
Media, Inc., 2018.
[11]. M. Anicas, RESTful API Design with Python. Apress, 2022.

62

