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ABSTRACT 

This paper presents a study on the utilization of Structured Streaming, which is a stream processing framework 

that uses the Apache Spark SQL engine. The study focuses on transitioning from traditional batch processing to 

stream processing in order to handle real-time datasets that have no size limitations. Structured Streaming 

provides a user-friendly, low-latency, and resilient approach to processing streaming data, addressing common 

issues like out-of-order data, managing states, and ensuring fault tolerance. It operates on a data model that 

treats data as a continuously expanding table and utilizes micro-batch and continuous execution modes to 

optimize throughput and latency. Furthermore, it introduces a consistent, fault-tolerant API that integrates 

batch and stream processing. The integration with Delta Lake enhances this framework by offering robust 

storage solutions, efficient handling of data discrepancies through features like schema evolution, and ensuring 

correctness through append-only operations and comprehensive support for stream-stream joins. The paper 

concludes that the combined usage of Structured Streaming and Delta Lake provides a powerful framework for 

analyzing and processing big data streams in real-time, accommodating various applications such as alerts, 

anomaly detection, and recommendation systems 

 

Key words: Structured Streaming, Spark Streaming, Delta Lake Streaming, Stream Processing 

__________________________________________________________________________________ 

 
INTRODUCTION 

Streaming data refers to a type of data that is generated continuously and, without any limits. It flows in an 

uninterrupted manner. Its rapidly becoming the primary form of data worldwide. Examples of streaming data 

include updates on media, website traffic readings from sensors and financial transactions. Streaming data 

makes up the majority of the information we encounter on a basis. To effectively handle, process and gain 

insights from this vast amount of information specialized tools and techniques are required. Managing and 

analyzing streaming data efficiently will be crucial in utilizing its potential as our world becomes more 

interconnected and driven by data. In contrast, to batch-oriented data processing that handles information in one 

operation stream processing is an ongoing process. 

  
 

The increasing trend of stream processing is attributed to its efficiency in managing vast volumes of live data, its 

capability of providing instantaneous analysis, and its versatility in various sectors. 

• Data Velocity & Volumes - Rising data velocity & volumes requires continuous, incremental 

processing - cannot process all data in one batch on a schedule 
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• Real-time analytics - Businesses demand access to fresh data for actionable insights and faster, better 

business decisions 

• Operational applications - Critical applications need real-time data for effective, instantaneous response 

[1] 

 
 

Stream Processing Use Cases 

Stream processing is a key component of big data applications across all industries 

1. Real-time alerts and notifications are essential for various applications that require immediate action.  

2. Stream processing enables the generation of timely notifications based on incoming data.  

3. These notifications can be sent to users or other systems through various communication channels.  

4. Email, SMS, and push notifications are commonly used methods for delivering real-time alerts.  

5. Stream processing use cases often involve monitoring systems, fraud detection, and anomaly detection.  

6. By continuously processing streaming data, organizations can quickly respond to critical events.  

7. Stream processing can also be leveraged for predictive analytics and recommendation systems.  

8. The ability to process data incrementally allows for more efficient and scalable processing.  

9. Incremental processing with structured streaming enables real-time updates to analytics dashboards. [2] 

 
Overall, stream processing offers a wide range of use cases for handling real-time data. About important events 

or updates is crucial in our fast-paced world. It allows us to stay informed and take immediate actions when 

needed. Whether it is breaking news, important emails, or app notifications, having real-time notifications can 

greatly enhance our productivity and keep us connected to what matters most. By being promptly notified, we 

can efficiently manage our time and responsibilities, ensuring nothing important slips through the cracks. In this 

digital age, where information is constantly being shared and updated, real time notifications provide us with the 

necessary tools to stay on top of things and make well-informed decisions. So, let us embrace the power of real-

time notifications and make the most out of our connected lives.  

Real-time reporting has revolutionized the way information is communicated and analyzed in today's fast-paced 

world. With its ability to instantly collect data, process it, and generate comprehensive reports, real-time 

reporting has become an invaluable tool for businesses, organizations, and individuals alike. This technology 

allows for the immediate monitoring of various metrics, such as sales figures, website traffic, customer 

feedback, and social media engagement, providing invaluable insights and actionable intelligence. The speed 

and accuracy of real-time reporting enable individuals and decision-makers to make informed choices, adjust 

strategies, and seize opportunities as they arise. By harnessing real-time reporting, companies can stay ahead of 

the competition, anticipate trends, and adapt quickly to changing market conditions. In an increasingly data-

driven world, real-time reporting is the key to staying agile, responsive, and successful. 

Incremental Extract, Transform, and Load (ETL) is a data integration approach that focuses on processing and 

transferring data in small, incremental batches. It minimizes processing time and resources by only working 

with the changes or updates that have occurred since the last ETL process. This approach provides near-real-

time data updates and improves scalability by only processing changes rather than the entire dataset. However, 

implementing incremental ETL requires careful design and can be more complex to maintain and troubleshoot. 

Despite these challenges, it offers numerous benefits and is increasingly popular for improving data processing 

efficiency, timeliness, and scalability for better decision-making and business outcomes. 
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Update the existing data to serve in real-time for online machine learning applications, ensuring quick and 

efficient processing of new information as it becomes available. 

Real-time decision making is a crucial process in which individuals and organizations use up-to-date data and 

information to make strategic and tactical choices promptly. This dynamic approach allows for swift analysis, 

assessment, and implementation, enhancing efficiency and responsiveness in various industries and sectors. 

Real-time decision making empowers individuals to act swiftly and confidently, ensuring timely responses to 

changing circumstances and maximizing opportunities for success. By harnessing the power of real-time data 

and analytics, decision-makers can gain valuable insights, optimize resource allocation, mitigate risks, and seize 

competitive advantages. Invested with the ability to adapt and pivot swiftly, organizations can navigate complex 

and fast-paced environments, positioning themselves for continued growth and resilience in today's dynamic 

world. 

Online machine learning is a subfield of machine learning that focuses on the development of algorithms and 

models that can learn from and make predictions on streaming data. Unlike traditional batch learning, where the 

entire dataset is used to train a model offline, online ML algorithms are designed to continuously update and 

adapt their models in real time as new data becomes available. This allows for more dynamic and responsive 

models that can quickly adapt to changing patterns and trends in the data. Online ML finds applications in 

various domains, such as recommendation systems, fraud detection, clickstream analysis, and anomaly 

detection. It has become increasingly popular in recent years due to the growing availability of streaming data 

and the need for real-time decision-making in many industries. 

Bounded vs. Unbounded Dataset 

Bounded Data:  

• Has a finite and unchanging structure at the time of processing. 

• The order is static. 

• Analogy: Vehicles in a parking lot. 

 
Unbounded Data: 

• Has an infinite and continuously changing structure at the time of processing. 

• The order not always sequential. 

• Analogy: Vehicles on a highway 

 
Batch vs. Stream Processing 

Batch Processing: 

Generally, refers to processing & analysis of bounded datasets (ie. size is well known, we can count the number of elements, etc.) 

Typical of applications where there are loose data latency requirements (ie. day old, week old, month old). 

This was traditional ETL from transactional systems into analytical systems 
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Stream Processing: 

Datasets are continuous and unbounded (data is constantly arriving, and must be processed as long as there is new data) 

Enables low-latency use cases (ie. real-time, or near real-time) 

Provides fast, actionable insights (ie. Quality-of-Service, Device Monitoring, Recommendations, etc.) [3] 

 
 

SIMILARITIES AND DIFFERENCES BETWEEN STREAM AND BATCH PROCESSING: 

Similarities: 

• Both have data transformation 

• The results of the streaming job are frequently accessed through batch jobs. 

• Stream processing commonly incorporates batch processing, specifically micro-batching. 

Differences: 

• The batch processing engine handles large batches of data, while the stream processing engine 

processes data row by row or in mini-batches for bounded data sets. 

• In the case of an unlimited dataset, batch processing is conducted through several iterations, while 

Stream processing is carried out in smaller batches. 

• Computation queries are carried out once during batch processing and multiple times during stream 

processing.[4] 

 

Advantages of Stream Processing 

Why use streaming (vs. batch)? 

• A more intuitive way of capturing and processing continuous and unbounded data 

• Reducing latency for applications and use cases that require quick response times. 

• Improved resilience by implementing a checkpointing mechanism 

• Automated accounting of fresh information. 

• Increased utilization of computing resources and the ability to scale up through ongoing and gradual data processing. 

Challenges of Stream Processing 

• Stream processing is not easy 

• Processing out-of-order data based on application timestamps (also called event time) 

• Maintaining large amounts of state 

• Processing each event exactly once despite machine failures 

• Handling load imbalance and stragglers 

• Determining how to update output sinks as new 

• events arrive 

• Writing data transactionally to output systems  
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Structured Streaming 

Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine. It 

provides high-level APIs in Scala, Java, and Python, thus making it effortlessly accessible and adaptable to a 

diverse community of developers worldwide. With its advanced features and reliable architecture, Structured 

Streaming enables seamless and efficient handling of real-time data streams, ensuring optimal performance and 

accuracy of data processing. Whether you are a seasoned developer or a beginner, Structured Streaming 

empowers you to effortlessly harness the potential of streaming data and unlock novel opportunities for data 

analysis and application development. 

How Structured Streaming Works 

Incremental Updates:- Data stream as an unbounded table. Streaming data is usually coming in very fast, with 

a continuous flow of information. The remarkable and innovative concept behind Spark Structured Streaming 

lies in processing infinite data seamlessly, treating it as incremental table updates that are constantly evolving 

and expanding with each new piece of data that arrives in the stream. This groundbreaking approach enables the 

real-time analysis and transformation of data, empowering organizations to harness the full potential of their 

streaming data sources for actionable insights and improved decision-making. With Spark Structured Streaming, 

the possibilities are boundless, as it unlocks the ability to perform complex analytics, aggregations, and 

computations on never-ending data streams, providing an unparalleled level of flexibility and adaptability to 

handle the dynamic and ever-changing nature of streaming data. By seamlessly capturing, processing, and 

updating data in an incremental and efficient manner, Spark Structured Streaming paves the way for real-time 

applications, machine learning models, and diverse use cases that rely on up-to-the-second insights and accurate 

predictions. Whether it's monitoring live events, detecting anomalies in real-time, or continuously updating a 

live dashboard with the most recent data points, Spark Structured Streaming is the cornerstone of modern data 

processing, enabling the seamless integration of real-time streaming data into a structured and manageable 

format. Embracing the power of incremental updates, Spark Structured Streaming ensures that organizations can 

stay ahead in this era of overflowing data, unlocking the true value and potential of unbounded data streams.[5] 

Micro-batch Execution: Accumulate small batches of data and process each batch in parallel. 

Continuous Execution: Continuously listen for new data and process them individually. 

Execution mode: 

1. An input table is defined by configuring a streaming read against source. 

2. A query is defined against the input table. 

3. This logical query on the input table generates the results table. 

4. The output of a streaming pipeline will persist updates to the results table by writing to an external 

sink. 

5. New rows are appended to the input table for each trigger interval. 

 
 

Anatomy of a Streaming Query 

A streaming query is composed of various components and stages. Each component and stage play a crucial role 

in the incremental processing of structured streaming. In this section, we will delve into the details of each 

component and stage to understand their significance in the context of incremental processing with structured 

streaming. 
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Core concepts: 

Input sources: Specify where to read data from. Spark supports Kafka and file sources. Databricks runtimes 

include connector libraries supporting Delta, Event Hubs, and Kinesis 

 
 

• Sinks: Store the converted output in external storage systems. 

 
• Transformations & actions: 100s of built-in, optimized SQL functions for efficient data processing in 

structured streaming.like from_json. In this example, cast bytes from Kafka records to a string, parse it 

as JSON, and generate nested columns 

 
• Checkpoint location: For tracking the progress and state of a streaming query. progress of the query 

• Output Mode: Defines how the data is written to the sink; Equivalent to “save” mode on static 

DataFrames 

 
• Trigger: Defines how frequently the input table is checked for new data; • The data is checked for new 

records at regular intervals; The trigger interval can be adjusted to optimize performance. Each time a 

trigger fires, Sparks check for new data and updates the results 

 
 

Benefits of Structured Streaming 

Unification: The Unified API for Batch and Stream Processing allows for the use of the same API for both 

batch and stream processing. This API supports various languages including Python, SQL, and Spark's other 

supported languages. It also enables the utilization of Spark's built-in libraries, including machine learning 

libraries, in a streaming context. This capability provides developers with a wide range of options for data 

manipulation and analysis within the streaming query. Most operations on a streaming DataFrame are identical 
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to a static DataFrame, except for the output mode and the option to specify a watermark column DataFrame. 

There are some exceptions to this, for example, sorting is not supported with streaming data. 

End-to-end fault tolerance: Structured Streaming ensures end-to-end exactly-once fault-tolerance guarantees 

through checkpointing. In case of failures; the streaming engine attempts to restart and/or recover from the last 

saved checkpoint and reprocess the data. This approach requires Replayable streaming source such as cloud-

based object storage and pub/sub services. In addition to that, the system employs redundant fault recovery 

mechanisms, including automatic error detection and correction algorithms. This ensures a seamless and 

uninterrupted streaming experience, even during unpredictable events. Moreover, a comprehensive monitoring 

system constantly evaluates the health and performance of the streaming pipeline, providing real-time insights 

and alerts to the operators. With these advanced features and measures in place, the system further enhances its 

ability to handle unexpected scenarios and maintain the integrity of the data. As a result, Structured Streaming 

not only guarantees fault tolerance but also enables efficient and reliable data processing. Lastly, the utilization 

of idempotent sinks ensures that multiple writes of the same data, identified by the offset, do not result in 

duplicates being written to the sink. This additional layer of redundancy further enhances the stability and 

accuracy of the streaming process. 

Managing Data Discrepancies: Providing assistance for handling data that arrives out of sequence and 

enabling aggregation queries based on event time windows and watermarking, which empowers users to 

establish a threshold for handling delayed data.[6] 

 

STRUCTURED STREAMING WITH DELTA LAKE 

Delta Lake Benefits: An open format storage layer built specifically for the innovative and powerful lakehouse 

architecture. Offering a wide range of advantages and functionalities, Delta Lake ensures seamless operations 

with its support for the highly efficient streaming dataframe API. Additionally, it enables open file access, 

granting users the ability to effortlessly interact with their data. With the inclusion of the versatile SQL API, 

executing complex queries becomes a breeze, while the Python API provides flexibility and convenience for 

data manipulation. Through its comprehensive feature set, Delta Lake truly revolutionizes data management and 

empowers users to unlock the full potential of their lakehouse architecture. 

 
 

Streaming from Delta Lake: When Using a Delta table as a streaming source, Each committed version 

represents new data to stream. Delta Lake transactions logs identify the version’s new data files. Structured 

Streaming assumes append-only sources. Any non-append changes to a Delta table causes queries streaming 

from that table to throw exceptions. Set delta.appendOnly = true to prevent non-append modifications to a table. 

Use Delta Lake change data feed to propagate arbitrary change events to downstream consumers. In addition, 

Delta Lake provides built-in support for stream-stream joins, enabling users to merge multiple streams on the 

fly. This functionality allows for real-time data integration and aggregation, providing a comprehensive solution 

for streaming data processing. Moreover, Delta Lake's schema evolution capabilities ensure that data can be 

seamlessly added or modified over time, without sacrificing compatibility with existing data structures. With its 

robust features and seamless integration with popular streaming frameworks, Delta Lake is a powerful tool for 

managing and processing streaming data. 

You have the ability to control and manage the rate at which micro-batches are processed by adjusting the 

maximum number of records or the maximum data size. By specifying these options in the DataStreamReader, 

you can effectively limit the input rate and ensure that it aligns with your desired parameters. This level of 

control allows for more efficient and optimized processing of micro-batches, resulting in enhanced performance 

and improved overall data management. 

maxFilesPerTrigger: Maximum number of files that can be read per micro-batch. By default, this value is set 

to 1,000, but it can be adjusted according to your needs and the size of your dataset. Increasing this value can 

improve the processing speed, especially when dealing with large datasets. However, keep in mind that 

increasing it too much can put a strain on your system resources. So, it is important to find the right balance and 

consider the capabilities of your hardware while making this adjustment. 
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maxBytesPerTrigger: Soft limit to amount of data read per micro-batch. This parameter allows you to control 

the size of each micro-batch by setting a maximum limit on the amount of data that can be read in a single batch. 

This is particularly useful when dealing with large datasets, as it helps prevent memory issues and ensures a 

smooth and efficient processing of data. By specifying a value for maxBytesPerTrigger, you can optimize the 

performance of your data processing tasks and ensure that the micro-batches are sized appropriately for your 

specific use case.[7] 

Delta Live Tables pipelines provide automatic tuning options for rate limiting, which means that it is 

recommended to refrain from explicitly setting these options for your pipelines. By leveraging the auto-tuning 

capabilities of Delta Live Tables, you can optimize the rate limiting process and ensure efficient pipeline 

operations. 

Each micro-batch written to the Delta table is committed as a new version. Delta Lake supports both append and 

complete output modes. Append is most common. Complete replaces the entire table with each micro-batch. It 

can be used for streaming aggregations or when the entire result needs to be reprocessed. This output mode 

guarantees that each micro-batch's result will be stored as a complete snapshot of the table at that point in time. 

This ensures consistency and allows for easy rollbacks or rewinds in case of failures. streaming queries that 

perform arbitrary aggregations on streaming data.[8] 

 

SUMMARY 

The article explores the insufficiency of conventional batch processing when it comes to managing continuous 

and limitless data, emphasizing the requirement for real-time analytics and stream processing to facilitate 

prompt and efficient responses by businesses and applications. It delves into different scenarios where stream 

processing is applicable, including real-time monitoring and predictive analytics. The article introduces 

incremental ETL, online machine learning, and structured streaming as remedies for managing real-time data to 

make proactive decisions and enhance system performance. Structured streaming, which is based on Spark SQL, 

provides scalable and resilient features along with APIs in various programming languages for efficient stream 

processing. It is enhanced by Delta Lake, a storage layer that allows for optimized data querying and 

modifications through schema evolution and stream-stream joins. The combination of Structured Streaming and 

Delta Lake enables effective data pipeline management and automated rate-limiting tuning, resulting in a 

seamless integration of batch and stream processing. The article also examines the difficulties connected to 

stream processing, such as dealing with out-of-order or outdated data and achieving scalability without 

sacrificing performance. Delta Lake enhances this procedure by being compatible with both append and 

complete output modes, thus providing flexibility in managing stream data. 
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