
Available onlinewww.ejaet.com 

European Journal of Advances in Engineering and Technology, 2019, 6(10):60-66 

 

Research Article ISSN: 2394-658X 

 

 

60 

 

Enhancing Firmware Upgrade Efficiency: The Impact of 

Compression on ECU Firmware Binary Files 

 
Roopak Ingole 

 

Manager – Advanced Embedded Software 

 Corporate Research & Technology,  

Cummins Inc.  

Columbus IN, USA  

roopak.ingole@cummins.com

ABSTRACT 

Firmware upgrades are critical for ensuring the performance, security, and feature enhancements of electronic 

control units (ECUs) in modern automotive systems. However, the increasing complexity of these systems 

poses significant challenges in terms of upgrade timing and data management. This paper explores the role of 

compression techniques in optimizing firmware upgrade processes for ECUs. By compressing firmware binary 

files, we hypothesize that the overall time required for firmware upgrades can be significantly reduced, thereby 

improving the efficiency of automotive software management. Through a series of experiments and 

simulations, we assess various compression algorithms and their impact on upgrade timing, integrity, and 

performance of ECUs. 

 

Keywords: ECU Firmware, Electronic Control Units 

 

INTRODUCTION 

Electronic Control Units (ECUs) are embedded systems in automotive electronics that control one or more of 

the electrical systems or subsystems in vehicles. As automotive technology advances, ECUs have become more 

complex, requiring frequent firmware updates to improve functionality, enhance security, and fix bugs. 

Traditional firmware upgrade processes often involve significant downtime due to the large size of firmware 

files and the limited bandwidth of automotive networks. Compression of firmware binary files presents a 

promising solution to accelerate the upgrade process without compromising the reliability or integrity of the 

system. 

OBJECTIVES 

• To analyze the effectiveness of different compression algorithms in reducing the size of ECU 

firmware binary files.  

• To evaluate the impact of compressed firmware files on the time required for firmware upgrades in 

automotive ECUs.  

• To assess the implications of compression on the integrity and performance of the firmware after 

decompression and installation. 

 

 

LITERATURE REVIEW 

A. Firmware Upgrade Challenges in Automotive ECUs 

Several studies have outlined the challenges associated with firmware upgrades in automotive systems, 

such as bandwidth limitations, upgrade integrity, and system downtime. The need for efficient methods to 

reduce firmware file size and upgrade time is critical, especially as vehicles become more reliant on 

software. For this we did some literature study on compression technology as described below. 

 

 



Ingole R                                                             Euro. J. Adv. Engg. Tech., 2019, 6(10):60-66 

___________________________________________________________________________ 

61 

 

 

[1]. DIANA-HEP Project on ROOT I/O Compression:  

This article outlines the efforts of the DIANA-HEP project to optimize data handling in the ROOT 

framework, which is widely used for data analysis in high-energy physics. The project's focus is on 

improving the I/O (input/output) efficiency through the use of advanced compression techniques. By 

integrating better compression methods, the project seeks to tackle the challenges associated with handling 

extremely large datasets, such as those generated by particle accelerators like the Large Hadron Collider. 

Enhancements in compression not only reduce storage demands but also speed up data processing and 

retrieval, crucial for timely analysis in physics experiments. In their review, they compared the performance 

of Zlib, LZMA & LZ4 compression techniques against their developed ROOT IO compression. [1] 

[2]. Comparison of Compression Algorithms: 

This comprehensive review provides a comparative analysis of multiple compression algorithms by 

evaluating their performance across different metrics such as speed, compression ratio, and memory usage. 

The article meticulously details each algorithm’s strengths and weaknesses, providing a nuanced view of 

where each algorithm performs best. For instance, algorithms like LZ4 are noted for their exceptional speed, 

making them ideal for applications where time is a critical factor, whereas algorithms like XZ offer higher 

compression ratios at the cost of slower performance and higher CPU usage. This guide is aimed at helping 

users in selecting the right algorithm based on their specific requirements, balancing between speed and 

compression efficiency. [2] 

[3]. Efficient Text Compression with Brotli:  

The Brotli compression algorithm is examined in this vignette, which was created by Google to improve 

compression techniques specifically for web content. The Brotli algorithm is particularly adept at 

compressing small files and is optimized for internet speeds, making it highly suitable for mobile web 

applications. The vignette emphasizes Brotli’s effectiveness in reducing data transfer sizes, which can 

enhance web page load times and reduce bandwidth consumption. [3] 

[4]. Linux Compressors Comparison on CentOS 6.5:  

This article offers a detailed performance comparison of several popular Linux compression tools on a 

CentOS 6.5 system. Through systematic benchmarking, it assesses the practical impact of these tools in 

terms of compression and decompression speed, CPU load, and memory usage. The article provides 

practical insights into how each compressor performs under different conditions and with different types of 

data. For example, while BZIP2 offers high compression ratios, it does so at the expense of speed and higher 

CPU usage, making it less ideal for time-sensitive applications. Conversely, tools like LZ4 and LZO are 

highlighted for their speed, suitable for environments where performance is a priority. [4] 

 

B. Compression Techniques 

Through the literature review, various compression algorithms have been explored in the context of 

embedded systems, including lossless algorithms like LZ77, LZMA, LZW, Huffman coding, and more 

recent techniques like Brotli and Zstandard [5]. Each algorithm offers different benefits in terms of 

compression rate, speed, and resource usage. For our ECU firmware upgrade use-case we focused only on 

lossless algorithms. 

[1]. LZ4 Compression Algorithm: The LZ4 repository on GitHub serves as a resource hub for one of the fastest 

compression algorithms available today. The documentation provided explores the algorithm's design, which 

is tailored for very high-speed compression and decompression scenarios. LZ4 is particularly noted for its 

minimal CPU usage and its ability to provide a good balance between speed and compression ratio, making 

it suitable for real-time applications such as gaming and video streaming where processing speed is crucial. 

The repository not only offers the source code but also extensive benchmarks that demonstrate LZ4’s 

performance across various data types and systems. LZ4 supports compression techniques that is suitable for 

streaming kind of applications. [6] [7] 

[2]. LZMA Compression Algorithm: LZMA compression is a type of data-compression algorithm. It was 

designed by Igor Pavlov as part of the 7z project and was first implemented in 1998. The name "LZMA" 

stands for "Lempel-Ziv Markov chain Algorithm". LZMA compresses files using both statistical modeling 

and dictionary techniques. Statistical modeling allows for the analysis of entire blocks of text, whereas 

dictionary techniques compress small pieces simultaneously. Like most algorithms of this sort, it works by 

replacing strings that frequently occur in the uncompressed data with pointers to previous occurrences. In 

LZMA compression, frequency estimates can be calculated given a set of symbols or substrings. Once you 

have done this, you use the resulting estimates to find matches and replace them with pointers. LZMA is 

designed to be extremely fast on a wide range of hardware, from traditional hard disks to modern solid-state 

drives and embedded devices with limited CPU power. [8] [9] 

[3]. LZW The LZW algorithm is commonly used to compress GIF and TIFF image files and occasionally for 

PDF and TXT files. It is part of the Unix operating system's file compression utility. The method is simple to 

implement, versatile and capable of high throughput in hardware implementations. Consequently, LZW is 



Ingole R                                                             Euro. J. Adv. Engg. Tech., 2019, 6(10):60-66 

___________________________________________________________________________ 

62 

 

 

often used for general-purpose data compression in many PC utilities. The LZW compression algorithm 

reads a sequence of symbols, groups those symbols into strings and then converts each string into codes. It 

takes each input sequence of bits of a given length -- say, 12 bits -- and creates an entry in a table for that 

particular bit pattern, consisting of the pattern itself and a shorter code. The table is also called a dictionary 

or codebook. It stores character sequences chosen dynamically from the input text and maintains 

correspondence between the longest encountered words and a list of code values. [10] [11] [12] [13] 

Based on the selected attribute below, we used Pugh matrix to select the algorithm for our experiment. We find 

LZ4 is best suited algorithm for firmware upgrade over serial link interface (Figure 1).  

 
 

Figure 1: Pugh Decision Matrix 

 

METHODOLOGY 

A. Experimental Setup  

We aim to utilize compression techniques to improve the time it takes to upgrade the Engine Control Unit 

(ECU). In our system, the ECU upgrade is conducted via a CAN link, which operates at a baud rate of 

500kbps (Figure 2). The upgrade process begins with a service tool that either retrieves the firmware from a 

server or uses a locally stored version. This tool initiates the download and places the ECU into ROM boot 

mode following the authentication and verification of hardware and software compatibility. The ROM boot 

of the ECU is designed to receive the firmware and transfer it to Flash memory. The bootloader processes 

the firmware in a serial stream and sequentially writes it to the flash memory.  

 

 
 

Figure 2: ECU Upgrade Setup 

 

Our ECU utilizes the NXP’s MPC5554 [14] microcontroller and employs the Intel HEX file format [15] for 

the firmware binary. An Intel HEX file is an ASCII text file consisting of lines that conform to the Intel 

HEX format (Figure 3), where each line contains one HEX record composed of hexadecimal numbers that 

signify machine language code and/or constant data. The HEX file is downloaded one record at a time, and 

the bootloader writes the data to the specified address in each record. The download occurs over the CAN 

link, which has a baud rate of 500kbps. This link becomes the critical constraint in accelerating the firmware 

flashing process, leading to ECU upgrade times ranging from 15 to 20 minutes—a significant inconvenience 

for both service technicians and end customers. 

 
 

Figure 3: Intel HEX Record 



Ingole R                                                             Euro. J. Adv. Engg. Tech., 2019, 6(10):60-66 

___________________________________________________________________________ 

63 

 

 

Due to the bootloader's lack of file system support and the record-by-record download approach, we have 

chosen to implement LZ4 decompression for its performance, which is highly suited for this application. We 

have integrated the LZ4 ‘C’ library into the bootloader and utilized its Streaming API [16] to decompress the 

received compressed HEX record and write it directly to the ECM Flash. The entire procedure is illustrated 

flowchart (Figure 4) and message sequence chart shown below (Figure 5): 

 
Figure 4: LZ4 HEX File Compression Flowchart 

  

 
Figure 5: ECU Upgrade Message Sequence Chart 

 

4. RESULTS 

A. Compression Efficiency  

In evaluating the effectiveness of compression techniques for ECU firmware updates, our analysis specifically 

looked at the performance of the LZ4 compression algorithm. Although LZ4 does not achieve the highest 

compression ratio when compared to other available compression algorithms, it delivers substantial compression 

efficiencies that are quite significant for practical applications. Specifically, LZ4 achieves an average 



Ingole R                                                             Euro. J. Adv. Engg. Tech., 2019, 6(10):60-66 

___________________________________________________________________________ 

64 

 

 

compression ratio of about 50% across various types of ECU firmware files. This ratio indicates that LZ4 

typically reduces the file size by half, which is a considerable reduction in data that needs to be transmitted over 

the CAN link during firmware upgrades.  

The benchmarking results of LZ4 compression are particularly noteworthy:  

Compression with LZ4_compress_fast: The original file size of 8,364,153 bytes was compressed to 4,302,002 

bytes, achieving a compression ratio of 51.43%. This operation was performed at a speed of 359.7 MB/s.  

Decompression with LZ4_decompress_fast: The decompression speed was recorded at 2599.6 MB/s, starting 

from the compressed file size back to its original.  

These results highlight LZ4’s strength in providing fast compression and decompression speeds. The high speed 

is crucial for time-sensitive applications such as ECU firmware updates where every second counts. The faster 

compression and decompression allow the firmware upgrade process to be completed more quickly, which is 

beneficial not only in reducing downtime during maintenance but also in enhancing the overall user experience 

by minimizing the vehicle’s out-ofservice time.  

Given these characteristics, LZ4 is particularly suited for scenarios where speed is more critical than achieving 

the absolute best compression ratio. The trade-off between speed and compression efficiency is justified in the 

context of ECU firmware updates, where the priority is to minimize upgrade time without excessively 

compromising on data transfer sizes. This makes LZ4 an ideal choice for automotive systems where both time 

and bandwidth are of essence.  

 

B. Upgrade Timing 

In the context of optimizing the firmware upgrade process for Engine Control Units (ECUs) via CAN links, our 

exploration into the use of LZ4 Frame compression has yielded significant improvements in reducing the total 

upgrade time. The use of LZ4, a compression algorithm known for its exceptional speed and decent 

compression efficiency, has demonstrated a profound impact on the efficiency of the firmware update process. 

When LZ4 Frame-compressed files are employed, the data that needs to be transmitted across the CAN network 

is substantially reduced. This reduction is crucial given the bandwidth limitations of the CAN link, which 

typically operates at a baud rate of 500kbps. By compressing the firmware files, the amount of data sent over the 

network is decreased, thereby reducing the time required for data transmission.  

Our findings indicate that the use of LZ4 compressed files leads to a reduction in firmware upgrade times by 

approximately 50% on average. This is a significant enhancement compared to using uncompressed files. For 

instance, if an uncompressed firmware upgrade process typically takes about 20 minutes, using LZ4 compressed 

files could reduce this to around 10 minutes. This halving of the upgrade time represents a major improvement 

in operational efficiency and has practical implications for automotive service operations.  

This substantial decrease in upgrade time can be attributed to several factors: 

Reduced Data Transmission Time: The primary benefit of using LZ4 compression is the reduction in the size 

of the firmware files, which directly decreases the time spent transmitting data over the CAN link.  

Efficient Decompression: LZ4's high decompression speed ensures that the time to decompress the received 

data on the ECU side remains minimal, preventing potential bottlenecks in the upgrade process.  

Streaming Process: With smaller data packets, the process of writing to the ECU’s flash memory can be 

executed more swiftly, as the system handles less data overall during the upgrade.  

These improvements not only reduce the downtime associated with firmware upgrades but also enhance the 

overall throughput of service operations, allowing service centers to handle more vehicles within the same 

timeframe. Additionally, the reduction in upgrade time significantly improves the service experience for both 

technicians and customers, minimizing the vehicle's downtime and potentially increasing customer satisfaction 

with the service process.  

In conclusion, the implementation of LZ4 Frame compression in the ECU firmware upgrade process marks a 

substantial advancement over the status quo, offering a more efficient, less time-consuming alternative that 

leverages fast data compression and decompression capabilities to meet the demands of modern automotive 

systems. 

DISCUSSION 

The results of our investigation into the use of the LZ4 compression algorithm for ECU firmware upgrades 

demonstrate that LZ4 effectively reduces file sizes, which is critical for optimizing the upgrade process over 

CAN links. However, the choice of a compression algorithm must consider various factors beyond mere 

reduction in file size. These factors include compression and decompression speeds, as well as the 

computational resources available on the ECU hardware, which can vary significantly across different vehicle 

models and generations. 

LZ4 is particularly noted for its balance between high decompression speeds and a satisfactory reduction in file 

size, making it suitable for time-sensitive applications such as ECU firmware upgrades. Nonetheless, the 

specific requirements of a given application may necessitate evaluating other compression algorithms that might 



Ingole R                                                             Euro. J. Adv. Engg. Tech., 2019, 6(10):60-66 

___________________________________________________________________________ 

65 

 

 

offer either faster compression speeds or higher compression ratios, depending on what aspect of performance is 

more critical under certain operational constraints. 

An important aspect of our findings is the confirmation that using LZ4 compression does not compromise the 

integrity or functionality of the ECU after the upgrade. Post-upgrade assessments show that ECUs remain fully 

operational, with all functionalities performing as expected without any degradation. This ensures that the 

compression process, while reducing file size and transmission time, does not alter the essential data or 

introduce errors during the decompression and writing stages. Maintaining the operational integrity of ECUs 

post-upgrade is paramount, as any compromise could affect vehicle safety and performance.  

Looking ahead, there is potential to achieve even greater compression efficiencies by exploring the High 

Compression capability of LZ4. This variant of LZ4 is designed to compress data at higher ratios, which could 

further reduce transmission times and improve overall upgrade efficiency. However, this approach typically 

requires more processing power for both compression and decompression, which might not be feasible on all 

ECU models due to hardware limitations.  

Further evaluation is necessary to determine the feasibility and benefits of implementing LZ4’s High 

Compression capabilities in the ECU upgrade process. This evaluation would need to carefully balance the 

improved compression ratios against the increased resource demands, ensuring that any gains in file size 

reduction do not adversely impact the upgrade process speed or the functional performance of the ECUs. Such 

investigations will help refine our understanding of the optimal use of compression technologies in automotive 

firmware updates, aiming to enhance efficiency without sacrificing reliability or safety. 

 

CONCLUSION 

The research conducted on the application of compression techniques to ECU firmware upgrades has 

underscored the critical role these technologies play in enhancing the efficiency of automotive software 

management. By deploying LZ4 compression, we have demonstrated a substantial reduction in the firmware 

upgrade time by approximately 50%, marking a significant improvement over traditional methods that involve 

larger, uncompressed files.  

This achievement not only streamlines the upgrade process but also minimizes the downtime for vehicles 

undergoing software enhancements, thereby enhancing service throughput and reducing inconvenience to both 

technicians and end-users. The success of LZ4 in this context is primarily attributed to its exceptional balance of 

high-speed compression and decompression capabilities, which are crucial in scenarios where upgrade time is of 

paramount importance.  

Additionally, our findings confirm that the integrity and functionality of ECUs remain unaffected post-upgrade, 

reinforcing the reliability of compression as a method to transmit and install firmware updates without 

compromising system performance. The potential for even greater efficiencies through the exploration of LZ4’s 

High Compression options suggests a promising avenue for future research, albeit with considerations for the 

varying computational power of different ECU models. 

In conclusion, the integration of compression technologies like LZ4 into the ECU firmware upgrade process 

represents a significant technological advancement, offering a more efficient, faster, and reliable alternative to 

the status quo. This adaptation not only meets the demands of modern automotive systems but also sets a 

benchmark for future innovations in ECU firmware management. Further investigations will continue to refine 

these approaches, aiming to optimize both the performance and reliability of vehicle electronic systems in an 

increasingly software-dependent automotive landscape. 

 

 REFERENCES 

[1]. Diana-hep, "Exploring Compression Techniques of ROOT IO," DianaHep, [Online]. Available: 

https://dianahep.org/pages/project_root_io_compression.html.html. 

[2]. Linux Reviews, "Comparison of Compression Algorithms," Linux Reviews, [Online]. Available: 

https://linuxreviews.org/Comparison_of_Compression_Algorithms.  

[3]. E. K. Z. S. a. L. V. Jyrki Alakuijala, "Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and 

Bzip2 Compression Algorithms," Google Inc., 22 Sept. 2015. [Online]. Available: 

https://cran.rproject.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf.  

[4]. G. Danti, "Linux compressors comparison on CentOS 6.5 x86-64: lzo vs lz4 vs gzip vs bzip2 vs 

lzma," Linuxaria, 29 May 2014. [Online]. Available: https://linuxaria.com/article/linux-compressors-

comparisonon-centos-6-5-x86-64-lzo-vs-lz4-vs-gzip-vs-bzip2-vs-lzma.  

[5]. M. Zhang and H. Lee, "A Comparative Study of Lossless Compression Algorithms for Embedded 

Systems.," Journal of Digital Technology, 2019.  

[6]. lz4.org, "LZ4," [Online]. Available: https://github.com/lz4/lz4.  

[7]. Wikipedia, "LZ4 (compression algorithm)," Wikipedia, [Online]. Available: 

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm).  

[8]. Lloyd, "easylzma," [Online]. Available: https://lloyd.github.io/easylzma/.  

https://linuxreviews.org/Comparison_of_Compression_Algorithms
https://github.com/lz4/lz4
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://lloyd.github.io/easylzma/


Ingole R                                                             Euro. J. Adv. Engg. Tech., 2019, 6(10):60-66 

___________________________________________________________________________ 

66 

 

 

[9]. Winzip, "LZMA: What is LZMA Compression?," [Online]. Available: 

https://www.winzip.com/en/learn/tips/what-is-lzma/.  

[10]. R. Awati, "LZW compression," [Online]. Available: 

https://www.techtarget.com/whatis/definition/LZW-compression.  

[11]. J. Davies, "How LZW (GIF) Compression Works," [Online]. Available: 

https://commandlinefanatic.com/cgi-bin/showarticle.cgi?article=art010.  

[12]. M. Dipperstein, "Lzw," [Online]. Available: https://github.com/MichaelDipperstein/lzw.  

[13].  Wikipedia, "Lempel–Ziv–Welch," [Online]. Available: 

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93We 

lch#:~:text=Lempel%E2%80%93Ziv%E2%80%93Welch%20(LZW,in 

%20the%20GIF%20image%20format..  

[14]. NXP, "32-bit MCU for Powertrain Applications MPC5554," [Online]. Available: 

https://www.nxp.com/products/processors-andmicrocontrollers/legacy-mpu-mcus/mpc55xx-mcus/32-

bit-mcu-forpowertrain-applications:MPC5554.  

[15]. ARM, "GENERAL: Intel HEX File Format," ARM Developer, [Online]. Available: 

https://developer.arm.com/documentation/ka003292/latest/#:~:text=The 

%20Intel%20HEX%20file%20is,code%20and%2For%20constant%20d ata..  

[16]. lz4.org, "LZ4 Block Format Description," [Online]. Available: 

https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md.  

[17]. Embedded, "Lossless Data Compression for Embedded Systems," Embedded, 9 June 2009. [Online]. 

Available: https://www.embedded.com/lossless-data-compression-for-embeddedsystems/ 

https://www.winzip.com/en/learn/tips/what-is-lzma/
https://www.techtarget.com/whatis/definition/LZW-compression
https://commandlinefanatic.com/cgi-bin/showarticle.cgi?article=art010
https://github.com/MichaelDipperstein/lzw
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93We
https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md

