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ABSTRACT 

The economic importance of machining process has encouraged to study regarding cutting tool life among 

many researchers so as to increase the product quality, machining  productivity, process stability and 

machining safety while decrease the overall production costs. In metal cutting process, failure of cutting tool is 

responsible for significant downtime, which not only effects the production time and cost but also lowers the 

productivity. The downtime occurs due to cutting tool failure alone is responsible for about 20% of overall 

downtime. Thus, it is recommended to have an accurate and reliable residual tool life estimation methodology. 

The aim of this work is to calculate the residual life of a worn cutting tool which is used for turning AISI D2 

steel bar under variable cutting condition. The proportional hazard model with Weibull distribution as baseline 

hazard is used to model the failure time data of cutting tool. Remaining useful life of cutting tool has been 

estimated using Mean Residual Life (MRL) function. The results obtained through the model have been verified 

experimentally and it shows quite a good agreement. 

 

Key words: Mean Residual Life, Cutting tool life, Survival analysis, Weibull distribution Proportional hazards 

model, Cutting tool Reliability 

__________________________________________________________________________________ 

 
1. INTRODUCTION 

Aim of modern manufacturing industry is producing economical and reliable products along with good quality. 

Quality of machining product is generally referred as good surface finish and accuracy in dimensions, which is 

highly dependent on the condition of cutting tool. Besides product quality, tool failure puts high impact on 

machining system and productivity. Moreover tooling cost accounts for a significant part of cost of machining. 

Hence, non-optimum use of cutting tool can effect both product quality and manufacturing economy. In 

practice, many times either cutting tools are not used up to their full life or cutting tool are kept on using beyond 

their effective life. Both underestimation and overestimation of tool life effects overall productivity and cost. 

Thus, having an idea regarding tool replacement time based on residual life estimation is highly necessary for a 

machining system.  

Till now many researchers have developed various models for estimating cutting tool life and TCM (Tool 

Condition Monitoring) strategy. The very first model was developed by Taylor [1] which is still widely used. 

However, this model is found to be confined for specific tool-workpiece combinations and small range of 

cutting speed [2]. Different model were proposed for indirect tool life estimation based on correlation between 

cutting force and tool wear [3-6]. Likewise, several models have been developed based on correlation of 

different monitoring signals such as temperature, surface roughness, vibration power consumption etc. with tool 

wear [7]. Though these methods are questionable in regard to randomness of toll wear [8]. Thus it necessitates 

development of model based on probability analysis. Various model based on probability distribution such as 

normal, lognormal, Weibull etc. were proposed for describing the probabilistic behaviour of toll wear. Different 
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tool replacement strategy were developed based on reliability analysis of cutting tool [9].Proportional hazards 

model (PHM), an effective tool for survival analysis, which is mostly used in medical applications, has been 

introduced by Mazzuchi [10] in machining field, for tool life assessment. The main feature of this model is that 

it takes into account time depending aging phenomenon of tool along with effect of the process parameters. 

Aramesh et al. [11] estimated the remaining tool life under variable cutting conditions corresponding to different 

state of tool wear using PHM.  

The aim of this work is to find out residual life of worn tool which is used for turning AISI D2 steel under 

variable cutting parameters. The PHM is used to model the cutting tool hazard rate for different cutting 

conditions in which cutting speed, feed rate and depth of cut are considered as model covariates. Subsequently, 

reliability function and failure density function are obtained which are used in Mean Residual Life (MRL) 

equation for estimating residual life of cutting tool. 

 

2. MODELLING OF MEAN RESIDUAL LIFE FUNCTION BASED ON  

PROPORTIONAL HAZARD MODEL 

2.1. The COX Proportional Hazard Model 

D. R. Cox [12] introduced the proportional hazards model (PHM) in 1972. This PHM is in one of the most 

popular models in the field of survival analysis due to its flexibility and simplicity in evaluating the effects of 

various model covariates which influence the failure time of a component or system. Hence, the proportional 

hazards model is extensively used in the field medical, engineering etc. for analysing failure time data and 

condition based monitoring (CBM). 

The PHM is based on the concept that the failure rate of an engineering component dependents on the operating 

time as well as the operating conditions. Hence, the PHM is suitable for survival analysis of cutting tool because 

tool life is extensively dependent on machining conditions (e.g. speed, feed rate, depth of cut etc.) and at the 

same time cutting tool has an aging effect with the time of machining [13].  

The hazard function for PHM is expressed by the equation as follow: 


n

i

iiCxthth )(exp).()( 0 n = number of variables         (1) 

The hazard function consists of the product of two parts. The first part ℎ0  𝑡   is termed as the baseline hazard, 

which is a time dependent function. It represents the aging characteristic of cutting tool. The second 

part 𝑒 𝑥𝑖𝐶𝑖
𝑚
1 , which is an exponential function of model covariates )( iC  along with corresponding model 

parameters )( ix  

In the place of baseline hazard function, we can assume any of the standard distribution such as Weibull, 

lognormal, normal, exponential, etc. However, it has been found that Weibull distribution is the best model for 

fitting failure time data of cutting tool [14]. Weibull distribution is widely used in time dependent failure 

analysis because of its flexibility in fitting variety of data. Hence, for this work, the Weibull distribution is 

considered for modelling baseline hazard which is used to present the time to failure data of cutting tools. The 

failure rate or hazard rate of a cutting tool operating under constant cutting condition (i.e. when speed, feed and 

depth of cut remain constant throughout the full life of a cutting tool) is given as follows: 
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Where 𝛽 represents the shape parameter and 𝜇 represents the scale parameter and the tool life t, is taken as 

continuous random variable. By substituting the Weibull baseline function in Eq. 1, it will reduce to: 
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The expression for calculating the cutting tool reliability at certain point of time when subjected to variable 

cutting condition is given by Eq. 4. This equation can be obtained from the relationship between hazard function 

and survival function as follow: 
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Similarly, the expression of failure density function𝑓 𝑡 , cutting tool subjected to variable cutting condition is 

given by the Eq. 5which can be obtained from the relationship between survival function and failure density 

function and as follow: 
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Where 𝐶1, 𝐶2 and 𝐶3 are the model covariates representing the speed and feed respectively. To obtain a balanced 

convergence of model parameters (𝑥𝑖), covariate values are used in normalized form, which are presented as 

follow: 
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The PHM parameters (𝛽, 𝜇,𝑥1 , 𝑥2 𝑎𝑛𝑑 𝑥3) can be found out through the maximum likelihood estimation (MLE) 

[15] method, using any standard statistical software like SPSS, Stata, SAS etc. Once the PHM parameters are 

estimated, the next step is to construct proportional hazard model by substituting the parameter values, for 

obtaining survival function and failure density function. Using these functions, the last step is to estimate useful 

life of cutting tool with the help of Mean Residual Life (MRL) function. Given that a tool has already been used 

for a certain time𝑡0, then residual life of the tool from that time𝑡0, can be estimated from MRL equation as 

follow: 
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2.1. Maximum Likelihood Estimation 

Three commonly used methods for estimating the parameters are the least-squares methods, the graphical 

method and the maximum likelihood estimation (MLE) method [16]. In this study the maximum MLE method 

is used to estimate the parameters of proportional hazard model. MLE is known to be very useful, practical and 

powerful technique for estimating parameters. Likelihood function can be written as: 
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Where, 𝜆 is used to represent the parameter(𝑥1 , 𝑥2  𝑎𝑛𝑑 𝑥3) which is need to be estimated. Probability density 

function is represented by 𝑓 𝑡𝑖 , 𝜆  and𝑅(𝑡𝑖 , 𝜆 ) represents the reliability function. C and F are censored dataset 

and failure dataset, respectively. The Parameter θ can be found out by solving the equation as follows: 
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The reliability function and probability density function are substituted into Eq. 7, so Weibull likelihood 

function is reduced to as follow: 
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Taking logarithm to the both sides of the Eq. 9, it is reduced to as follow: 

   




















































n

i

n

i

CxCxCx
t

CxCxCx
t

L
f

1

332211

1

332211

)1(

expexpln)(ln






 (10) 

Applying the maximum likelihood estimation technique, quasi-differential coefficient ln[L(𝜆)] can be used to 

find out the parameters. Subsequently, three nonlinear equations can be obtained as follows: 
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After solving these three nonlinear equations the parameters of PHM (𝑥1 , 𝑥2  𝑎𝑛𝑑 𝑥3) will be obtained. 
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3. EXPERIMENTATION 

Cylindrical bar of AISI D2 steel is used as workpiece material. Dry turning operating have been performed on 

CNC turning centre as shown in Fig. 1. TiN coated tungsten carbide inserts having specification CNMG 

120408, have been used for conducting experiments. 

The value cutting parameters are selected from the range provided by the tool manufacturer. The machining 

parameters (also model covariates) with their levels and their values are listed below in Table 1. 

 

  
Fig. 1 Turning centre Fig. 2 Upright materials microscope 

 

Table -1 Process variables with levels 

Machining parameters Cutting speed (m/min) Feed rate (mm/rev) Depth of cut (mm) 

Level 1 60 0 .15 0 .30 

Level 2 100 0.25 0.50 

Experiments have been performed based on the full factorial design of experiment considering three factors with 

two levels as presented in Table 2. 

Table -2 Design of experiment 

Exp. Run No. of Repetitions Cutting speed (m/min) Feed rate (mm/rev) Depth of cut (mm) 

1 2 60 0.30 0.25 

2 2 60 0.15 0.50 

3 2 100 0.15 0.25 

4 2 100 0.30 0.50 

5 2 100 0.15 0.50 

6 2 100 0.30 0.25 

7 2 60 0.30 0.50 

8 2 60 0.15 0.25 

Each experimental run has been repeated twice using sixteen number of new cutting tools in order to include 

random nature of cutting tool life data. While turning, sequential observation (measurement of tool flank wear) 

has been carried out until the pre-defined threshold flank wear limit  𝑉𝐵𝑚𝑎𝑥 =  0.2 mm  is reached. For 

example, the data of sequential wear measurements for experimental run 1 is shown in Table 3. Tool wear has 

been measured using upright materials microscope as shown in Fig. 2. The same procedures have been 

continued for all experimental run. Fig.3 shows the evolution of flank wear for different experiment runs. 

 

Table -3 Sequential measurements of tool wear for experimental run 1 

Sequential  

Measurement no. 

Machining  

Time (s) 

Tool Wear (mm) 

Repetition 1 Repetition 2 

1 0 0 0 

2 180 0.059 0.062 

3 360 0.077 0.082 

4 540 0.086 0.099 

5 720 0.101 0.111 

6 900 0.119 0.132 

7 1080 0.135 0.155 

8 1260 0.167 0.191 

9 1440 0.212 0.242 
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Fig. 3 Flank wear curve for different experimental run 

(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4 (e) Run 5 (f) Run 6 (g) Run 7 (h) Run 8 

The cutting tool fails when the tool becomes dull and no longer operates within acceptable quality. The common 

way of quantifying the tool time to failure (TTF) is to put a limit on the maximum acceptable flank 

wear(𝑉𝐵𝑚𝑎𝑥 ). Critical tool wear limit is chosen based upon the economic aspect of the machining process and 

product. As, once a tool gets worn out significantly, it degrades the product quality in terms of the surface 

roughness and dimensional inaccuracy. At the same time, the non-optimum use of cutting tool leads to increase 

in tooling cost which in turn increases the overall machining. 
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In this study, the critical flank wear level equal to 0.2 mm, is selected as the failure criteria this. Sixteen number 

of new tool inserts were used in this study for eight experiment runs (each of which was repeated two times). 

Failure time (t) corresponding to the threshold limit (𝑉𝐵𝑚𝑎𝑥  = 0.20 mm) of each tool insert is calculated by 

interpolating between last two observations (𝑖𝑡ℎ  𝑎𝑛𝑑 (𝑖 + 1)𝑡ℎ ) by using the following equation:  

ii

i

ii

i

VBVB
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tt

tt
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



 1

max
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           (14) 

Here it is assumed that the evolution of tool flank wear to be linear as shown in Fig. The similar procedure was 

followed for other experimental runs to acquire the full dataset layout. The values of tool life for each 

experimental run using new tool are presented in Table 4. 

Table -4 Tool Life data from experiment 

Exp. Run Tool Life 

(s) 

Exp. Run Tool Life 

(s) 

1 1392 9 292 

2 1291 10 283 

3 2026 11 237 

4 1854 12 228 

5 352 13 1134 

6 342 14 1225 

7 145 15 2336 

8 134 16 2242 

 

4. RESULTS AND DISCUSSION 

4.1. Estimation of PHM Parameters 

Experimental data set has been used to obtained model parameters. Well-known statistical software R was used 

to estimate parameters of baseline hazard i.e. the parameters of Weibull distribution (𝛽,𝜇). The remaining three 

parameters(𝑥1 , 𝑥2  𝑎𝑛𝑑 𝑥3) of PHM were estimated through another popular statistical software, SPSS. All the 

four estimated parameters are presented in Table 5.  

Table -5 Estimated model parameters 

𝜷 𝝁 𝒙𝟏(for speed) 𝒙𝟐 (for feed) 𝒙𝟑 (for depth of cut) 

1.162 999.208 4.261 1.643 0.238 

 

4.2. Development of the mean residual life function 

Once the parameters of the PHM are estimated, the next step is to develop the mathematical equations by 

substituting these parameters in the equation of reliability and probability density function. After substituting the 

parameters, the equation of reliability and probability density function are reduced to as below: 
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The values of the covariates are normalized so as to know the effect of speed, feed and depth of cut on the 

hazard function As the speed, feed and depth of cut value are taken in the range of (60 - 100), (0.15 - 0.30) and 

(0.25 – 0.5), respectively, the normalized value of the covariates will be obtained as follows:  
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The remaining life of cutting tool till failure while operating under any random cutting parameters combination, 

can be calculated by substituting the calculated probability density function and its corresponding reliability 

function in Eq. 9.  This model is capable of calculating the remaining tool life at any arbitrarily chosen cutting 

parameters combination. 
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4.3. Cutting Tool Reliability and Hazard Rate under Variable Cutting Conditions 

From Eq. 16, the reliability function has been plotted for each of experimental run as shown in Fig. 4.The effect 

of machining conditions on the reliability function can be seen by comparing between two different runs. 

 
Fig. 4 Reliability function curves for different experimental runs 

For example, from the comparison between the experimental run 1 and 6 (where cutting speed is variable while 

feed and depth of cut are constant)and also between the experimental run 2 and 7 (where feed is variable while 

cutting speed and depth of cut are constant), it can been seen that the effect of speed on cutting tool reliably is 

much higher than that of feed. 

From Eq. 17, the hazard rates have been plotted for each of experimental run as shown in Fig. 5. The effect of 

different machining parameters on the hazard rate can be seen by comparing between two different runs. As in 

Fig. 3, the maximum risk of failure is when machining under high cutting speed and feed rate. 

 
Fig. 5 Hazard rate plots for different runs 

4.4. Estimation of Residual Life 

After estimating the distribution parameters and constructing the reliability model, next step is to calculate 

expected residual life. For example, let a cutting tool has been used while machining a part for 𝑡0= 540 (s) under 

machining conditions: cutting speed = 70 (m/min), feed rate = 0.20 (mm/rev), depth of cut = 0.3 (mm). Then, 

mean residual life of can be calculated by the Eq. 19, which tells the information about how long the same tool 

can be used for further matching under the same matching condition before replacing with a new one. These 

calculations were done with the help of Matlab software. 
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4.5. Model Validation 

To check the accuracy of the presented model, two validation tests have been performed based on randomly 

selected cutting parameters within the predefined range, which are presented in Table 6. For each validation test, 

the predicted remaining life estimated from the model was compared with the result of the validation test as 

presented in Table 7. 

Table -6 Experimental runs for model validation 

Validation Test Cutting speed (m/min) Feed rate 

(mm/rev) 

Depth of 

cut (mm) 

1 70 0.20 0.3 

2 90 0.25 0.4 

 

Table -7 Comparison between estimated and experimental results 

Val. 

Test 

Consumed life (s) Residual life from 

model (s) 

Residual life from 

experiment (s) 

Percentage 

error (%) 

1 540 872.961 824 5.82 

2 240 346.427 322 7.45 

It can be noticed that, the difference between the estimated and experimentally obtained remaining tool life is 

less than 8%. Both of the predicted residual cutting tool life close to the experimentally obtained remaining tool 

life. The error can be minimized if more numbers of tool life data (may be either experimentally collected or 

from previous history in the case of machining industry) are used for fitting to a distribution model. Because for 

such case, estimated parameters would have been more accurate.  

 

5. CONCLUSION 

In this work, a methodology based on proportional hazard model (PHM) is introduced for residual tool life 

estimation, which is intended for optimize cost of machining and maximise the availability time of machine 

tool. The PHM is found to be appropriate to obtain the operational reliability and the failure density function of 

cutting tool, as it considers both the time dependent degradation phenomenon and the effect varying process 

parameters. Using these model, useful remaining life of a cutting tool can be estimated for any desire cutting 

condition. Hence, decision regarding optimum cutting tool replacement time can be taken. 
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