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ABSTRACT 

The aim of this paper was to apply different forecasting tools for comparative statistical study for the optimal value of 

total blood requirements of year 2017 on the basis of data from 2011 to 2016. With this objective, the study was 

undertaken with four appropriate forecasting models having statistical projections like Least-Square, Decomposition 

multiplicative, winter’s, and time series models SARIMA were used to forecast of Total Blood Demand. The final results 

pertained to the both statistical and time series analysis revealed that the SARIMA (2, 1, 1) (1, 1, 1)12 model had most 

efficient method of forecasting of TBD as given the data. The accuracy of the forecast is also applied with the least 

Akaike Information Criterion (AIC) of 854.89, Mean square error (MSE) have 98053.15, Mean Absolute Percent Error 

(MAPE) of 10.81% and Root Mean Square Error (RMSE) of  313.13 to evaluated forecast value for the year of 2017. The 

model was further validated by the Portmanteau test (L-Jung box test) with no significant correlation between residuals 

at different lags. 
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INTRODUCTION 

In contemporary world, blood supply system has become more complex than ever before, since consumers' demand in 

terms of services and better products are changing. The field of Operations Management deals with designing, operating 

and continuously improving productive systems [1]. In terms of blood operation management, despite many 

achievements in modern world, people and organizations are still unable to address all practical reasons related to blood 

operation management [2]. operation management of blood is seen through operation research and distribution through 

the individual hospital blood banks (HBB) as well as regional blood banks (RBB) systems [3]. According to Times of 

India reviled a news that “Maharashtra tops in blood collection, but also wastes most” by right to information (RTI) 

query. In other state Uttar Pradesh (UP) and Karnataka wasted the maximum units of blood. In 2016-17, over 3 lakh units 

of fresh frozen plasma was discarded. These figures shows that the blood shortage is a chronic problem in our country 

mostly metro cities like Delhi and Mumbai said Kothari. India has an annual shortfall of three million units of blood. The 

shortage of blood, plasma or platelets has becomes the main cause for maternal mortality and deaths in mostly accident 

cases [4].Operation Management community through research work sees significant and rapid progress in the field of 

blood bank inventory management in the past few years accordingly. Operation management of blood through such 

research has been studied from both individual hospital blood banks HBB and RBB to show the operation pattern [3]. All 

types‟ blood are really needed.  

This work has been done at “Krishna Rotary Blood Bank and Diagnostic Centre” which is situated at Kota, Rajasthan. It 

is associated with the government of Rajasthan. It established at Kota in October 2004 and successfully running by S. K. 

Sadhak Memorial Trust. It is certified with ISO 9001:2000. The vision and mission of Krishna rotary blood bank is unity, 

serviceability, creativity perfectness, accountability and availability 24 hours for blood and its components. Blood is a 

perishable product because of having limited sources and cannot be produce when increasing in demand. Blood 

transfusion has become one of the most essential part in dealing with modern health since it helps to save millions of 

lives every year. Blood is a unique product, having limited resources because of artificial substitutes are not yet to be 

found, making blood donations to be in great need [9].  
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LITERATURE REVIEW 

This paper focused on appropriate forecasting methods applied by past researcher. A paper was to develop “Reducing 

uncertainty in demand of blood” by using ARMA and VARMA methodology. This Data management system is the 

repository for huge data, and overtime huge data deposit has come to be required for blood data management [4]. 

Simamora & Silitonga, (2014) in a simulated study highlighted the effectiveness of ARIMA in assessing the blood 

demand forecast in Indonesia. In case of blood transfusion series in addition to this, Raman, (2011) also has listed 

ARIMA and Exponential Smoothening to be effective in forecasting blood transfusion demand, however, only up to the 

case of time series data of 1 year, forecasting dengue incidence in Dhaka, Bangladesh[10]. A related study was presented 

a “Forecasting incidence of dengue in Rajasthan” using time series analysis (SARIMA) [11]. The Least-Square method 

forecasts on the other hand, is used for trend estimation, known for being the most cost-effective model in providing 

valuable information of the desired data, as compared to other models. It is known for determining regression in time 

series data [21], Decomposition multiplicative method is another forecasting method, whose method is based on trend, 

cyclic, seasonality and irregular variations forecasting system in time series analysis. The equation of  follows the trend, 

de-trend, seasonal, de-seasonal factors [22]. A comparative study was developed on SARIMA model with other relative 

techniques for Natural Rubber production in India Since. The present study has been ultimate use of SARIMA and other 

techniques for time series data. The above underlined studies have a great supported for prepared this paper.  

 

METHODOLOGIES 

A) Trend (Least square) Method: It is a quantitative procedure for estimating mathematically the average relationship 

between the independent variables and dependent variables. It involves one depended variable in demand function. One 

of the best method Least-square method having straight line upward or downward trend is obtained according to time 

series. Least square method can be formulated as 

 𝑌′ = 𝑛𝑎 + 𝑏 𝑋 

 

𝑏 =
𝑛 𝑋𝑌 − ( 𝑋)( 𝑌)

𝑛 𝑋2 − ( 𝑋)
2  

 

𝑎 =  
 𝑌

𝑛
 − 𝑏  

 𝑋

𝑛
  

 

Where Y= Total blood demand, 𝑌′= Forecast demand, a= Intercept, b= slope, n=sample size (72), x= Time period, 

The trend equation found that A relatively low R
2 

=0.028 indicates that there is a lot of room for improvement in our 

estimated equation (Y‟= -4.8689*X + 2172). The results of accuracy of forecast shows that Mean absolute error (MSE) 

was found 345119.9, Mean absolute percentage error (MAPE) was to be 23% and Root mean square error (RMSE) was to 

be 587.46. 
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Fig. 1 Forecasting for year of 2017 by Least-square method 

 

B) Multiplicative Decomposition Model 

The multiplicative decomposition method is used for modelling that time series data containing seasonal (s), Trend (T), 

Cyclical (C) and Random (R) components. The error terms may be a random and seasonal components for any one season 

are the same in each year. This model used when the magnitude of the seasonal pattern vary with time, deepened upon the 

overall level of series. The magnitude of the seasonal pattern increases as the data values increases, and decreases as the 

data values decrease. Multiplicative Decomposition method follows equation that is  
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Yt=Tt*Ct*St*RtHere, Yt=denote the forecast series, Tt = denotes the linear trend, Ct =denotes cyclical, St =denotes 

seasonality. Rt=denotes random error, t=denotes the time period. 

1) The first step is calculates L-step moving average to measure the combination of trend–cyclical (TC) components of 

data series, centred at the time period (t) for length (L) „12‟ (monthly series). Seasonal and random components, 𝑆𝑡  and Rt 

will be eliminated by this step, this step is expressed as 

𝑀𝑡 =  𝑌𝑡

12

1

/12 

2)  Centre moving average (CMA) = Trend* Cycle 

Ratio of actual to centre moving average     

3) This step is calculate the trend and remove the trend means de-trend the data series by Tt=a+bt 

4)This step is calculate cycle term by dividing the moving average by the computed trend and seasonal ratio for de-

seasonal the data. It can be expressed as   Ct=Mt/Tt 

5) This step is calculate seasonality by dividing the series by moving averages. It can be expressed as  

St=Y/(T*C) 

6) After obtaining the seasonal index, remove the seasonal effect from the time series, called de-seasonal the data, 

dividing the data by the seasonal indices. This is done by accomplished by dividing the K series by 𝑆𝑖  where the values of 

S1, S2,… Sg are repeated. It can be expressed as  

Rt= Kt/St
 

7) Develop the forecast using the trend equation and these factor. Table is showing the estimated Trend, seasonal and 

residual for calculate the forecast for year 2017   
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Fig. 2 Decomposition method (Parameters estimation) 

Fig.2 shows that the various components de-trended data, seasonal adjusted data, and combination of both. Figure 

component analysis of total blood demand because of the de-trend data looks same as the original observations and in the 

seasonal adjusted  data look quite different from the original observations that concluded the trend component is not 

present in data but a seasonal component were presented in data. The residual graph shows that the fitted values are under 

predicted in the part of 5
th

 annual cycle, having a large positive residuals in this regions. 
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Fig. 3 Forecasting for year of 2017 by decomposition method 

 

c) Winters’ (Triple Exponential smoothing method) 
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This is an exponential smoothing method that consider both Trend and seasonality pattern in to account. The seasonal 

“figure” in a seasonal time series should repeat itself for each period (m). This method is applicable when the data series 

having trend as well as seasonality over time. It consist three factors like Level (lt) Trend (Tt) seasonality (snt) to find the 

forecast. The Holt-Winters method can be easily applied on a single data series that show a typical seasonal as well as 

trend pattern, in that it allows the shape of the figure (but not the period) to vary with time. 

This model can be represented as: 

Forecast Equation               𝐹𝑡+𝑚 =  𝑠𝑛𝑡 + 𝑚𝑏𝑡 𝑙𝑡−𝐿+𝑚  

Level Equation  𝑙𝑡 = 𝛼  
𝑦𝑡

𝑠𝑛 𝑡−𝑙
 +  1 − 𝛼 (𝑙𝑡−1 + 𝑏𝑡−1) 

Trend Equation                      𝑏𝑡 = β 𝑙𝑡 − 𝑙𝑡−1 +  1 − 𝛾 𝑏𝑡−1 

Whereas yt is the observation, bt is the trend factor, 

snt is the seasonal index, Ft+m is the forecast at m periods ahead,  α, β, and 𝛾 are smoothing constants between with 0 and 

1, consider (0.2) optimal value, L= number of seasons in a year (L= 12 for monthly data) 
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Fig. 4 Forecasting for year of 2017 by Holt-winters method 

 

d) The Box-Jenkins (SARIMA) Methodology 

This is a specified statistical, effective method and having iteration approach to solve the complex time series. It is a 

stochastic process that evolves with time. Box-Jenkins forecasting models are based on statistical concepts based upon 

multiplicative linear auto regressive integrate moving average method. It is an optimization process that having a wide 

spectrum of time series behaviour. Seasonal Auto Regressive Integrated Moving Average (SARIMA) is essentially the 

extension of ARIMA model used to detect the “seasonal” component in the time series data. In this non-seasonal and 

seasonal component are involved for selecting a better model. A standard notation for the SARIMA model as ARIMA (p, 

d, q) × (P, D, Q) S.  

SARIMA model can be formulated as: 

𝜑𝑝 𝐵 𝛷𝑃 𝐵
𝑠  1 − 𝐵 𝑑 1 − 𝐵𝑠 𝐷𝑦𝑡 = 𝜃𝑞 𝐵 𝛩𝑄 𝐵

𝑠 𝛼𝑡𝑦𝑡 =  𝑧𝑡 − 𝜇  

ARN-S (P) – Non-Seasonal Autoregressive part of order p  

𝜑𝑝 𝐵 = (1 − 𝛷1𝐵 −⋯−𝛷𝑝𝐵) 

MRN-S (q) – Non-Seasonal Moving average part of order q 

𝜃𝑞 𝐵 = (1 + 𝜃1𝐵 + ⋯+ 𝜃𝑞𝐵
𝑞) 

ARS (P) – Seasonal Autoregressive part of order p  

𝛷𝑃 𝐵
𝑠 = (1 − 𝛷1𝐵

𝑠 −⋯− 𝛷𝑝𝐵
𝑠𝑃) 

MAS (Q) – Seasonal Moving average part of order Q 

𝛩 𝐵𝑠 = (1 + 𝛩1𝐵
𝑠 + ⋯+ 𝛩𝑄𝐵

𝑠𝑄) 

 1 − 𝐵𝑠 𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−𝑠 
 

When  = 1, the series is non-stationary,  

= Non-seasonal AR component, = Seasonal AR component, 𝜃𝑞= Non-Seasonal MR component 

SARIMA is applicable on stationary time series with having seasonality in data series accomplished in four stages, they 

are following 

Whereas yt is the observation, bt is the trend factor, 

snt is the seasonal index, Ft+mis the forecast at m periods ahead, α, β, and 𝛾 are smoothing constants between with 0 and 1, 

consider (0.2) optimal value, L= number of seasons in a year (L= 12 for monthly data) 
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a) Model Identification.  

b) Model Estimation. 

c) Diagnostic Checking. 

d) Forecasting. 

Box-Jenkins methodology assumption follows some tests results for data compatibility  

Table –1 Assumptions for Box-Jenkins Methodology 

Statistical Tests Score C.V. P-Value Sig. (5.0%) 

(a) White noise test 30.30 3.84 0.0% False 

(b) Normality Test 

Jarque-Bera 14.35 5.99 0.1% False 

Doornik Chi-Square 17.65 5.99 0.0% False 

Shapiro –wilk .927 5.99 0.0% False 

(c) Stationary Test 

Augmented Dickey-fuller -1.0 -2.0 28.41% False 

This table shows that the white test is not present in data which show the data is applicable for box-methodology but not 

stationarity (presence of unit root). The first order differencing will make the data stationarity and box-cox transformation 

will make the data normal which must require for this method. After this formulation various test results is presented 

below 

Table –2 Statistical test result (After Box-Cox transformation-2) 

Statistical Tests  Score C.V. P-Value (5.0%) 

(a) Normality Test (after Box-cox Transformation 2) 

Jarque-Bera 0.21 5.99 90.2% True 

Doornik Chi-Square 0.02 5.99 98.9% True 

Shapiro–wilk test 0.99 5.99 90.1% True 

(b)  Stationary Test (after Differencing of order 1) 

Augmented Dickey-fuller -6.6 -2.0 0.1% True 

 Model identification is based on autocorrelation and partial auto correlation, presented below 
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Fig. 5 ACF analysis for model selection of MR term 
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Fig. 6 PACF analysis for model selection of AR term 
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The ACF and PACF suggested that the five SARIMA models like SARIMA(2,0,1)(1,1,1)12, 

SARIMA(2,1,1)(1,1,1)12,SARIMA(2,0,1)(0,1,1)12, SARIMA (2,0,1)(1,1,0)12, SARIMA (1,0,1)(1,1,0)12 SARIMA 

(1,0,1)(1,1,0)12 estimated for total blood demand for 2017. Therefore, to detect the same, this section presents the 

SARIMA modeling using the existing blood demand data. 

SARIMA model selection shown in table below 

Table-3 Model Selection amongst various types of SARIMA models 

SARIMA(p,q,d)(P,D,Q)s LLF AIC SBC 

SARIMA(1,1,1)(1,1,1)12 -840.92 854.92 872.34 

*SARIMA(2,1,1)(1,1,1)12 -838.89 854.89 871.37 

SARIMA(2,0,1)(0,1,1)12 -853.64 865.64 878.11 

SARIMA (2,0,1)(1,1,0)12 -853.02 865.02 877.48 

SARIMA (1,0,1)(1,1,0)12 -854.30 864.30 874.69 

SARIMA (1,0,1)(0,1,1)12 -853.64 863.64 874.03 

Table-3 presents the goodness of fit model with appropriate Akaike information criterion (AIC) and Log likely hood 

function (LLF)and Schwarz‟s Bayesian Criterion (SBC) that is SARIMA(2,1,1)(1,1,1)12 has been found optimal model 

having least (AIC), Schwarz‟s Bayesian Criterion higher Log likely hood function (LLF) than any other models. 

SARIMA(2,1,1) (1,1,1)12  model equation can be written as: 

𝑌𝑡 = 𝑌𝑡−12 +  𝑌𝑡−1 − 𝑌𝑡−13 ∗ 872𝑒𝑡−1 − .444 𝑒𝑡−12 + .872 ∗ .444𝑒𝑡−13+∝𝑡+ .872 ∝𝑡  

 

CONCLUSION 

The forecasts estimated for year 2017 by all the models are significantly different from each other. Amongst these 

models, SARIMA (2,1,1)(1,1,1)12 have least value of MSE (98053.15), MAPE(10.81%) and RMSE (313.13) appeared to 

be the best model. Considering the results from the analysis, the work has concluded SARIMA (2,1,1)(1,1,1)12 model to 

be the most efficient model with accuracy measure with least MSE, MAPE and RMSE values in forecasting blood 

demand for reducing wastage, inventory control means preventing excess and shortage of blood. SARIMA 

(2,1,1)(1,1,1)12 model is regarded as the robust model amongst all other forecasting methods criteria for estimating the 

Total blood demand. 
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