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ABSTRACT 

In this paper, the Elzaki transform homotopy perturbation method (ETHPM) has been successfully applied to obtain the 

approximate analytical solution of the linear and nonlinear Klein-Gordon equations which arises in quantum field 

theory, relativistic physics, wave theory and other physical phenomena. The proposed method is an elegant combination 

of the new integral transform “Elzaki transform” and homotopy perturbation method. The method is really capable of 

reducing the size of the computational work besides being the effective and convenient for solving linear and nonlinear 

partial differential equations. Some numerical examples are used to illustrate the preciseness and effectiveness of the 

proposed method. 
 

Key words: Elzaki transform, Homotopy perturbation method, Linear and nonlinear Klein-Gordon equations. 

2010 Mathematics Subject Classification: 35A22, 35C05, 35C10 

________________________________________________________________________________________ 
 

1. INTRODUCTION 

In recent years, many research workers have paid attention to find the solution of nonlinear differential equations by 

using various methods. Nonlinear phenomena have important effects on applied mathematics, chemistry, physics and 

related to engineering; many such physical phenomena are modeled in terms of nonlinear partial differential equations. 

For example, the Klein-Gordon equations which are written in the following form  

𝑢𝑡𝑡  𝑥, 𝑡 − 𝑢𝑥𝑥  𝑥, 𝑡 + 𝑎 𝑢 𝑥, 𝑡 = 𝑔(𝑥, 𝑡),                                                                                              (1) 

with initial conditions 

𝑢 𝑥, 0 = 𝑕 𝑥 ,   𝑢𝑡 𝑥, 0 = 𝑓 𝑥 ,                                                                                                    (2) 

appears in quantum field theory, relativistic physics, dispersive wave-phenomena, plasma physics, nonlinear optics and 

applied physical sciences. Several techniques including finite difference, collocation, finite element, inverse scattering, 

decomposition, variational  iteration method (VIM), homotopy analysis transform method (HATM) and many more, 

have been used to handle such equations [1, 3, 10, 11, 13, 16]. Most of these methods have their inbuilt deficiencies like 

the calculation of Adomain’s polynomials, the Lagrange multiplier, divergent results and huge computation work. Elzaki 

transform is a useful technique for solving linear partial differential equations [5] but this transform is totally incapable of 

handling nonlinear equations because of the difficulties that are caused by the nonlinear terms. He [9, 14, 15] developed 

the homotopy perturbation technique for solving such physical problems. In this paper, we use homotopy perturbation 

method to decompose the nonlinear term, so that the solution can be obtained by iteration procedure. This means that we 

can use both Elzaki transform and homotopy perturbation method to solve many nonlinear problems, see [2, 4].  

 

2. STUDY OF ELZAKI TRANSFORM HOMOTOPY PERTURBATION METHOD (ETHPM) 

To illustrate the basic idea of this method [2, 4]; consider a general nonlinear non-homogeneous partial differential 

equation with initial conditions of the form: 

 𝐷𝑢 𝑥, 𝑡 + 𝑅𝑢 𝑥, 𝑡 + 𝑁𝑢 𝑥, 𝑡 = 𝑔(𝑥, 𝑡)                                                                                          (3) 

           𝑢 𝑥, 0 = 𝑕 𝑥 ,   𝑢𝑡 𝑥, 0 = 𝑓 𝑥 , 
where 𝐷 is linear differential operator of order two, 𝑅 is linear differential operator of less order than 𝐷,  𝑁 is the general 

nonlinear differential operator and 𝑔(𝑥, 𝑡) is the source term. 

Taking Elzaki transform on both sides of eq. (3) by using [5-7], we get   
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 𝐸[𝐷𝑢 𝑥, 𝑡 ] + 𝐸[𝑅𝑢 𝑥, 𝑡 ] + 𝐸[𝑁𝑢 𝑥, 𝑡 ] = 𝐸[𝑔 𝑥, 𝑡 ],                                                                    (4) 

using the differentiation property of Elzaki transform and above initial conditions, we have 

𝐸 𝑢 𝑥, 𝑡  =  𝑣2𝐸 𝑔 𝑥, 𝑡  + 𝑣2𝑕 𝑥 + 𝑣3𝑓 𝑥 − 𝑣2𝐸 𝑅𝑢 𝑥, 𝑡 + 𝑁𝑢 𝑥, 𝑡                                         (5) 

applying the inverse Elzaki transform on both sides of eq. (5), to find 

𝑢 𝑥, 𝑡 =  𝐺 𝑥, 𝑡 − 𝐸−1 𝑣2𝐸 𝑅𝑢 𝑥, 𝑡 + 𝑁𝑢 𝑥, 𝑡                                                                                      (6) 

where 𝐺 𝑥, 𝑡  represents the term arising from the source term and the prescribed initial condition. 

Now, we apply the homotopy perturbation method, (see [9, 14, 15]) 

𝑢 𝑥, 𝑡 =   𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0                                                                                                                                  (7) 

and  the nonlinear term can be decomposed as  

𝑁[𝑢 𝑥, 𝑡 ] =   𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0                                                                                                                               (8) 

where 𝐻𝑛 (𝑢) are He’s polynomials (see, [8, 12]) and given by 

𝐻𝑛 𝑢0 , 𝑢1, … , 𝑢𝑛  =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
 𝑁  𝑝𝑖𝑢𝑖

∞
𝑖=0   𝑝=0   ,     𝑛 = 0, 1, 2, …                                                                   (9) 

substituting eqs. (7) and (8) in eq. (6), we get  

  𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 =  𝐺 𝑥, 𝑡 − 𝑝 𝐸−1 𝑣2𝐸 𝑅  𝑝𝑛𝑢𝑛 𝑥, 𝑡 +∞

𝑛=0  𝑝𝑛𝐻𝑛 (𝑢)∞
𝑛=0     .                             (10) 

This is the coupling of the Elzaki transform and the homotopy perturbation method. Comparing the coefficient of like 

powers of 𝑝, the following approximations are obtained. 

 𝑝0: 𝑢0 𝑥, 𝑡 = 𝐺 𝑥, 𝑡  
 𝑝1: 𝑢1 𝑥, 𝑡 = −𝐸−1 𝑣2𝐸 𝑅𝑢0 𝑥, 𝑡 + 𝐻0(𝑢)   
 𝑝2: 𝑢2 𝑥, 𝑡 = −𝐸−1 𝑣2𝐸 𝑅𝑢1 𝑥, 𝑡 + 𝐻1(𝑢)   
 𝑝3: 𝑢3 𝑥, 𝑡 = −𝐸−1 𝑣2𝐸 𝑅𝑢2 𝑥, 𝑡 + 𝐻2(𝑢)   
. 

. 

. 

Then the solution is 

 𝑢 𝑥, 𝑡 = log𝑝→1  𝑢𝑛 𝑥, 𝑡 ∞
𝑛=0  

               = 𝑢0 𝑥, 𝑡 + 𝑢1 𝑥, 𝑡 + 𝑢2 𝑥, 𝑡 + 𝑢3 𝑥, 𝑡 + ⋯                                                                              (11)                  

 

3. APPLICATIONS 

In this section, we apply the Elzaki transform homotopy perturbation method (ETHPM) to solve the linear and nonlinear 

Klein-Gordon equations. 

 

Example 3.1. Consider the following linear Klein-Gordon equation 

𝑢𝑡𝑡  𝑥, 𝑡 − 𝑢𝑥𝑥  𝑥, 𝑡 +  𝑢 𝑥, 𝑡 = 0,                                                                                                                 (12) 

with the initial conditions 

𝑢 𝑥, 0 = 0,   𝑢𝑡 𝑥, 0 = 𝑥.                                                                                                                    (13)     

Applying the Elzaki transform on both sides of eq. (12) subject to the initial conditions (13), we have  

𝐸 𝑢 𝑥, 𝑡  =  𝑣3𝑥 + 𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢 .                                                                                                      (14) 

The inverse of Elzaki transform implies that  

 𝑢 𝑥, 𝑡 =  𝑥𝑡 + 𝐸−1  𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢  .                                                                                                   (15) 

Now we apply the homotopy perturbation method,  

 𝑢 𝑥, 𝑡 =   𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 ,                                                                                                                  (16) 

and the nonlinear term can be decomposed as  

 𝑁[𝑢 𝑥, 𝑡 ] =   𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0 ,                                                                                                               (17) 

using eqs. (16)-(17) into eq. (15), we get 

 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑥𝑡 + 𝑝𝐸−1 𝑣2𝐸  𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0   .                                                                      (18) 

 Comparing the coefficients of like powers of 𝑝 in (18), we have 

 𝑝0: 𝑢0 𝑥, 𝑡 = 𝑥𝑡, 

 𝑝1: 𝑢1 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢0

𝜕𝑥2 − 𝑢0  =  −
𝑥𝑡3

3!
, 

 𝑝2: 𝑢2 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢1

𝜕𝑥2 − 𝑢1  =  
𝑥𝑡5

5!
, 

proceeding  in similar manner we can obtain further values, 

 𝑝3: 𝑢3 𝑥, 𝑡 =  −
𝑥𝑡7

7!
, 

 𝑝4: 𝑢4 𝑥, 𝑡 =  
𝑥𝑡9

9!
, 

. 

. 

. 
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Therefore the solution 𝑢 𝑥, 𝑡  is given by  

 𝑢 𝑥, 𝑡 = 𝑥  𝑡 −
𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
+

𝑡9

9!
− … , 

 ⟹ 𝑢 𝑥, 𝑡 = 𝑥 sin 𝑡,                                                                                                                            (19) 

which is the same solution as obtained by VIM [13] and HATM [10].  

 
Fig. 1 Graph of  𝑢 𝑥, 𝑡 = 𝑥 sin 𝑡 , 𝑡 > 0 and 0 ≤ 𝑥 ≤ 1. 

Example 3.2. Consider the following linear Klein-Gordon equation 

𝑢𝑡𝑡  𝑥, 𝑡 − 𝑢𝑥𝑥  𝑥, 𝑡 +  𝑢 𝑥, 𝑡 = 2 sin 𝑥,                                                                                                    (20)                                                                          

with the initial conditions 

𝑢 𝑥, 0 = sin 𝑥 ,   𝑢𝑡 𝑥, 0 = 1.                                                                                                           (21)     

Applying the Elzaki transform on both sides of eq. (20) subject to the initial conditions (21), we have  

𝐸 𝑢 𝑥, 𝑡  =  𝑣2 sin 𝑥 + 𝑣3 + 2 𝑣4sin 𝑥 + 𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢 .                                                               (22)                                                                                   

The inverse of Elzaki transform implies that  

 𝑢 𝑥, 𝑡 =  sin 𝑥 + 𝑡 + 𝑡2 sin 𝑥 + 𝐸−1  𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢  .                                                                   (23)        

Using eqs. (16)-(17) into eq. (23), we get 

 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = sin 𝑥 + 𝑡 + 𝑡2sin 𝑥 + 𝑝𝐸−1 𝑣2𝐸  𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0   .                                     (24) 

Comparing the coefficients of like powers of 𝑝 in (24), we get 

𝑝0: 𝑢0 𝑥, 𝑡 = sin 𝑥 + 𝑡 + 𝑡2 sin 𝑥,  

 𝑝1: 𝑢1 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢0

𝜕𝑥2 − 𝑢0   

                      = −𝑡2sin 𝑥 −
𝑡3

3!
−

𝑡4

3!
sin 𝑥, 

 𝑝2: 𝑢2 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢1

𝜕𝑥2 − 𝑢1   

                       =
𝑡4

3!
sin 𝑥 + 8

𝑡6

6!
sin 𝑥 +

𝑡5

5!
 , 

 𝑝3: 𝑢3 𝑥, 𝑡 =  𝐸−1  𝑣2𝐸  
𝜕2𝑢2

𝜕𝑥2 − 𝑢2   

                        = −8
𝑡6

6!
sin 𝑥 − 16

𝑡8

8!
sin 𝑥 −

𝑡7

7!
, 

proceeding in similar manner we can obtain further values, 

 . 
. 

. 

Therefore the solution 𝑢 𝑥, 𝑡  is given by  

⟹ 𝑢 𝑥, 𝑡 = sin 𝑥 + sin 𝑡,                                                                                                                 (25) 

which is the same solution as obtained by VIM [13] and HATM [10].  
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Fig. 2 Graph of  𝑢 𝑥, 𝑡 = sin 𝑥 + sin 𝑡 , 𝑡 > 0 and 0 ≤ 𝑥 ≤ 1. 

Example 3.3. Consider the following nonlinear Klein-Gordon equation 

𝑢𝑡𝑡  𝑥, 𝑡 − 𝑢𝑥𝑥  𝑥, 𝑡 + 𝑢2 𝑥, 𝑡 = 𝑥2𝑡2,                                                                                                   (26) 

with the initial conditions 

𝑢 𝑥, 0 = 0,   𝑢𝑡 𝑥, 0 = 𝑥.                                                                                                                (27)     

Applying the Elzaki transform on both sides of eq. (26) subject to the initial conditions (27), we have  

𝐸 𝑢 𝑥, 𝑡  =  𝑥𝑣3 + 2𝑥2𝑣6 + 𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢2 .                                                                                (28) 

The inverse of Elzaki transform implies that  

 𝑢 𝑥, 𝑡 =  𝑥𝑡 + 2𝑥2 𝑡4

4!
+ 𝐸−1  𝑣2𝐸  

𝜕2𝑢

𝜕𝑥2 − 𝑢2  .                                                                               (29) 

Now we apply the homotopy perturbation method,  

 𝑢 𝑥, 𝑡 =   𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 ,                                                                                                               (30) 

and the nonlinear term can be decomposed as  

 𝑁[𝑢 𝑥, 𝑡 ] =   𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0 ,                                                                                                            (31) 

using eqs. (30)-(31) into eq. (29), we get 

 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 =  𝑥𝑡 + 2𝑥2 𝑡4

4!
+ 𝑝𝐸−1 𝑣2𝐸  𝑝𝑛𝑢𝑛 𝑥, 𝑡 −∞

𝑛=0  𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0   .                       (32)                       

Where 𝐻𝑛(𝑢) are He’s polynomials [8, 12] that represents the nonlinear terms. The first few components of He’s 

polynomials, are given by  

𝐻0 𝑢 = (𝑢0)2,  
 𝐻1 𝑢 = 2𝑢0𝑢1, 

𝐻2 𝑢 = 2𝑢0𝑢1 + 𝑢1
2 , 

. 

. 

. 

Comparing the coefficients of like powers of  𝑝 in (32), we get 

𝑝0: 𝑢0 𝑥, 𝑡 = 𝑥𝑡 +
𝑥2𝑡4

12
,  

 𝑝1: 𝑢1 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢0

𝜕𝑥2 − 𝐻0 𝑢    

                      =
𝑡6

180
−

𝑥4𝑡10

12960
−

𝑥3𝑡7

252
−

𝑥2𝑡4

12
, 

 𝑝2: 𝑢2 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢1

𝜕𝑥2 − 𝐻1 𝑢    

                       = −
𝑥2𝑡12

71280
−

11𝑥𝑡9

22680
−

𝑡6

180
+

𝑥6𝑡16

18662400
+

11𝑥4𝑡10

45360
+

383𝑥5𝑡13

15921360
+

𝑥3𝑡7

252
 , 

. 

. 

. 

Proceeding in similar manner we can obtain further values. Therefore the solution 𝑢 𝑥, 𝑡  is given by  

⟹ 𝑢 𝑥, 𝑡 = 𝑥𝑡,                                                                                                                                (33)  

which is the same solution as obtained by VIM [13] and HATM [10].  



Gill & Dubey                                                                Euro. J. Adv. Engg. Tech., 2018, 5(8):649-655  

_________________________________________________________________________________ 

653 

 

 

 
Fig. 3 Graph of  𝑢 𝑥, 𝑡 = 𝑥𝑡, 𝑡 > 0 and 0 ≤ 𝑥 ≤ 1. 

Example 3.4. Consider the following nonlinear Klein-Gordon equation 

𝑢𝑡𝑡  𝑥, 𝑡 − 𝑢𝑥𝑥  𝑥, 𝑡 + 𝑢2 𝑥, 𝑡 = 2𝑥2 − 2𝑡2 + 𝑥4𝑡4,                                                                          (34) 

with the initial conditions 

𝑢 𝑥, 0 = 0,   𝑢𝑡 𝑥, 0 = 0.                                                                                                               (35)     

Applying the Elzaki transform on both sides of eq. (34) subject to the initial conditions (35), we have  

𝐸 𝑢 𝑥, 𝑡  =  2𝑥2𝑣4 − 4𝑣6 + 24𝑥4𝑣8+𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢2 .                                                                (36) 

The inverse of Elzaki transform implies that  

 𝑢 𝑥, 𝑡 =  𝑥2𝑡2 −
𝑡4

6
+

𝑥4𝑡6

30
+ 𝐸−1  𝑣2𝐸  

𝜕2𝑢

𝜕𝑥2 − 𝑢2  .                                                                     (37) 

Using eqs. (30)-(31) into eq. (37), we get 

 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 =  𝑥2𝑡2 −

𝑡4

6
+

𝑥4𝑡6

30
+ 𝑝𝐸−1 𝑣2𝐸  𝑝𝑛𝑢𝑛 𝑥, 𝑡 −∞

𝑛=0  𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0   ,             (38) 

proceeding in similar manner as we done in solution of Example 3.3. Again comparing the coefficients of like power of 𝑝 

in eq. (38), we have 

𝑝0: 𝑢0 𝑥, 𝑡 = 𝑥2𝑡2 −
𝑡4

6
+

𝑥4𝑡6

30
,  

 𝑝1: 𝑢1 𝑥, 𝑡 = 𝐸−1  𝑣2𝐸  
𝜕2𝑢0

𝜕𝑥2 − 𝐻0 𝑢    

                      =
𝑡4

6
−

𝑥4𝑡6

30
−

288𝑥2𝑡8

40320
−

20𝑡8

40320
−

532224 𝑥8𝑡14

14!
+

24𝑥2𝑡7

5040
−

2688𝑥6𝑡10

3628800
+

4032𝑥4𝑡11

39916800
, 

. 

. 

. 

Proceeding in similar manner we can obtain further values. Therefore the solution 𝑢 𝑥, 𝑡  is given by  

𝑢 𝑥, 𝑡 = 𝑥2𝑡2,                                                                                                                                    (39)  

which is the same solution as obtained by VIM [13] and HATM [10].  

 
Fig. 4 Graph of  𝑢 𝑥, 𝑡 = 𝑥2𝑡2, 𝑡 > 0 and 0 ≤ 𝑥 ≤ 1. 
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Example 3.5. Consider the following nonlinear Klein-Gordon equation 

𝑢𝑡𝑡  𝑥, 𝑡 − 𝑢𝑥𝑥  𝑥, 𝑡 + 𝑢2 𝑥, 𝑡 = 6𝑥𝑡(𝑥2 − 𝑡2) + 𝑥6𝑡6,                                                                    (40) 

with the initial conditions 

𝑢 𝑥, 0 = 0,   𝑢𝑡 𝑥, 0 = 0.                                                                                                               (41)     

Applying the Elzaki transform on both sides of eq. (40) subject to the initial conditions (41), we have  

𝐸 𝑢 𝑥, 𝑡  =  6𝑥3𝑣5 − 36𝑥𝑣7 + 720𝑥6𝑣10 +𝑣2𝐸  
𝜕2𝑢

𝜕𝑥2 − 𝑢2 .                                                        (42) 

The inverse of Elzaki transform implies that  

 𝑢 𝑥, 𝑡 =  𝑥3𝑡3 −
3𝑥𝑡5

10
+

𝑥6𝑡8

56
+ 𝐸−1  𝑣2𝐸  

𝜕2𝑢

𝜕𝑥2 − 𝑢2  .                                                                  (43) 

Using eqs. (30)-(31) into eq. (43), we get 

 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 =  𝑥3𝑡3 −

3𝑥𝑡5

10
+

𝑥6𝑡8

56
+ 𝑝𝐸−1 𝑣2𝐸  𝑝𝑛𝑢𝑛 𝑥, 𝑡 −∞

𝑛=0  𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0   .         (44) 

In a similar manner as before, the solution 𝑢 𝑥, 𝑡  is given by  

𝑢 𝑥, 𝑡 = 𝑥3𝑡3,                                                                                                                                  (45)                                                                                                              

which is the same solution as obtained by VIM [13] and HATM [10].  

 
Fig. 5 Graph of  𝑢 𝑥, 𝑡 = 𝑥3𝑡3, 𝑡 > 0 and 0 ≤ 𝑥 ≤ 1. 

 

4. CONCLUSION 

In this paper, the mixture of new integral transform “Elzaki transform” with the homotopy perturbation method has been 

successfully applied to find the solution of the linear and nonlinear Klein-Gordon equations with initial conditions. The 

method is reliable and easy to use. The results show that the Elzaki transform homotopy perturbation method (ETHPM) 

is powerful and efficient technique in finding exact and approximate solutions for linear and nonlinear partial differential 

equations. In conclusion, the ETHPM may be considered as a nice refinement in existing numerical techniques and might 

find the wide applications.   
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