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ABSTRACT 

In this work, we consider a two-dimensional problem of an infinitely long solid cylinder consisting of two different 

homogeneous and isotropic thermoelastic materials within the context of the fractional order theory of thermoelasticity. 

The lateral surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution which 

is a function of time t and z. There are no body forces or heat sources affecting the medium. Laplace and exponential 

Fourier transform techniques are used to solving the problem. The inverse Laplace and exponential Fourier transforms 

are obtained using a numerical technique.  

The predictions of the fractional order theory are discussed and compared with those for the generalized theory of 

thermoelasticity. We also study the effect of the fractional derivative parameters of the two media on the behavior of the 

solution. Numerical results are computed and represented graphically for the temperature, displacement and stress 

distributions. 
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1. INTRODUCTION 

Lord and Shulman [1] introduced the theory of generalized thermoelasticity with one relaxation time by using the 

Maxwell-Cattaneo law of heat conduction instead of the conventional Fourier’s law. The heat equation associated with 

this theory is hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both the 

uncoupled and the coupled theories of thermoelasticity. The uniqueness of solution for this theory was proved under 

different conditions by Ignaczak [2], Sherief and Dhaliwal [3] and by Sherief [4]. Exact solution for a problem of a 

spherical cavity was obtained by Sherief and Saleh [5]. Some problems for a penny-shaped crack and a mode I crack 

were solved by Sherief and El-Maghraby [6-7]. This theory was extended by Sherief et al. [8] to micropolar media. 

Anwar and Sherief [9] studied A Problem in Generalized Thermoelasticity for an Infinitely Long Annular Cylinder 

Composed of Two Different Materials. 

Fractional calculus has been used successfully to modify many existing models of physical processes. Caputo and 

Mainardi [10-11] and Caputo [12] found good agreement with experimental results when using fractional derivatives for 

a description of viscoelastic materials and established the connection between fractional derivatives and the theory of 

linear viscoelasticity. 

The solution obtained by using ordinary derivatives predicts an instantaneous response while that obtained by using 

fractional derivatives predicts a retarded response that depends on the history of the applied causes. This is more in 

accord with physical observations [13]. 

The general space-time-fractional heat conduction equation in the one-dimensional case has been formulated by Gorenflo 

et al [14]. Povstenko [15] made a review of thermoelasticity that uses fractional heat conduction equation. The theory of 

thermal stresses based on the heat conduction equation with the Caputo time-fractional derivative is used by Povstenko 

[16] to investigate thermal stresses in an infinite body with a circular cylindrical hole. Povstenko proposed and 

investigated new models that use fractional derivative in [17-18].  

The fractional order theory of thermoelasticity was derived by Sherief et al. [19]. It is a generalization of both the 

coupled and the generalized theories of thermoelasticity. Sherief and Abd El Latief [20, 21] have solved a 1D problems 
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for a half space and for spherical cavity in this theory, solved a 2D problem of half- space [22], studied the effect of the 

fractional derivative parameter on fractional thermoelastic material with variable thermal conductivity [23] and applied 

this theory to a 1D problem for a half-space overlaid by a thick layer of a different materials [24]. 

Recently, Hamza et al. [25] derive a new theory of thermoelasticity associated with two relaxation times using the 

methodology of fractional calculus, Hamza et al. [26] have solved 1D problems in the context of this theory, derive a 

new mathematical model of Maxwell's equations in an electromagnetic field using the physical principles of fractional 

calculus[27]. Some contribution works that use fractional calculus can be found in [28-30].     

In this work, we solve a 2D problem of an infinitely long solid cylinder consisting of two different homogeneous and 

isotropic thermo elastic materials within the context of the fractional order theory of thermoelasticity [19]. The lateral 

surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution. The solution is 

obtained for different values of the fraction parameters of the two media. The fractional parameters effects on the media 

in radial and axial directions are discussed. 

 

2. FORMULATION OF THE PROBLEM 

We consider a two-dimensional problem of an infinitely long solid cylinder consisting of two different homogeneous and 

isotropic thermo elastic materials. The inner layer occupies the region 0 ≤ r ≤ a, - ∞ < z < ∞ and the outer layer occupies 

the region a ≤ r ≤ b, - ∞ < z < ∞, where (r, ф, z) are cylindrical polar coordinates with unit vectors er , eф and ez. The lateral 

surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution which is a 

function of time t and z. There are no body forces or heat sources affecting the medium.  

Due to the physical of the problem, all considered quantities will depend on r, z and t only. 

The displacement vector iu  takes the form 

 zirii etzrwetzru ),,(),,(u  , i = 1, 2. (1) 

where the suffix 1 refers to the inner medium and the suffix 2 refers to the outer medium. 

The cubical dilatation ei in medium i is thus given by 
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The equation of motion in vector form can be written as 
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where i , i  are Lamé’s constants, i  is the density, Ti is the absolute temperature and i  is a material constant given 

by tii  )23( i  where α ti is the coefficient of linear thermal expansion. 
2  is Laplace's operator in cylindrical 

polar coordinates, given by  
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Applying the divergence operator to both sides of equation (3), we obtain 
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The time fraction heat conduction equations [19] for both media are given by 
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where ki is the thermal conductivity, ci is the specific heat at constant strain, T0 is a reference temperature assumed to be such 

that  Ti-T0 <<1, i  is the relaxation time and i is the fraction order parameters for the two media, satisfy 0 ≤ i ≤ 1 in the 

Caputo sense. 

The constitutive relations have the form: 
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 0
ii zr   . (6e) 

We also have the modified Fourier’s law of heat conduction [19], namely  
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where qri and qzi are the heat flux components in the radial and z-direction respectively. 

 Let us introduce the following non-dimensional variables: 
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Using the above non-dimensional variables, (dropping the asterisks for convenience), The governing equations (3)-(7a) in 

non-dimensional form become  
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The boundary conditions of the problem are assumed to be as follows: 

,0rr 0rz  , ,),( ztf  at r = b  (13)  

where b is the radius of the lateral cylinder. 

The continuity conditions of the problem are given by 

,21   ,21 uu  21 ww  , 21 rrrr   , 21 rzrz   , 1 2r rq q , at r = a. (14) 

where a is the radius of the inner cylinder. 

 

3. SOLUTION IN THE TRANSFORMED DOMAIN 

Applying the Laplace transform with parameter s defined by the relation 
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The above equation can be factorized as 
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The solution of equation (20) can be written in the form 
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Similarly eliminating   between equations (16) and (18), we get 
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Applying Fourier transform with parameter p defined by the relation, 
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Equation (24) is the modified Bessel differential equations whose solution is 
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where I0 and K0 are the modified Bessel functions of the first and second kinds ,respectively of order zero and Aij , Bij are 

parameters depending on s and p. 

The function K0 (qij r) is not bounded at the inner region. The solution is given by 
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In a similar manner, we obtain 
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Substituting from equations (27-28) into equation (17), we get the heat flux components in the form 
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Substituting from equation (34) into equation (33) and equating components of er and ez on both sides, we obtain 
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Differentiating equation (2) with respect to r, we obtain 
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Substituting from equation (37) into equation (35), we get 
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Applying Laplace and Fourier transforms to both sides of equation (41), we obtain  
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















iiiiiii efm

r
r

rr

*2*2*2 )1(
1

 .   (42) 

where 2222 psVm ii
i

   

Substituting from equations (27-30) into the right-hand side of equation (42), we obtain 

2 2
*

2 2 2 2
11 1 1 1 0 12

1

1
( ) ( )j j j

j

m f A k s I r
r r r

 


  
    

  
   (43) 





2 2
*

2 2 2 2
22 2 2 0 2 2 2 22

1

2 2 2

2 0 2 2 2 2

1
( ) ( )

( ) ( )

j j j

j

j j j

m f A I r k V s
r r r

B K r k V s

  

 



  
    

  

 


 (44) 

The solutions of equations (43) and (44) take the form 

1

*

1 0 1 11 0 11 12 0 12( ) ( ) ( )f C I m r A I r A I r       (45) 

2

2
*

2 0 2 2 0 2 2 2 0 2 2 0 2

1

( ) ( ) ( ( ) ( ) )j j j j

j

f C I m r D K m r A I r B K r  


     (46) 

Thus the solution of equation (38) takes the form 

1

2
*

1 1 1 1 1 1 1 1

1

( ) ( )j j j

j

u C m I m r A q I r


   (47) 

2

2
*

2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2

1

( ) ( ) ( ( ) ( ) )j j j j j j

j

u C m I m r D m K m r A q I r B q K r  


     (48) 

 In order to find the displacement components wi applying Laplace and Fourier transforms to both sides of equation 

(2) 























***
iii ur

rr
e

pI
w

11
, 1I . (49) 
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Using the equations (29- 30) and (47-48), we obtain  

1

2
*

2 2

1 1 0 1 1 0 1

1

( ) ( )j j

j

I
w C m I m r p A I r

p




 
  

 
  (50) 

 2

*
2

2 2 0 2 2 0 2

2
2

2 2 0 2 2 0 2

1

( ) ( )

( ) ( )j j j j

j

I
w m C I m r D K m r

p

p A I r B K r  


 


    




 (51) 

Applying Laplace and Fourier transforms into the equations (12), we obtain 

 
**

*
*

iiii
i

i e
r

u
rri

 



 ,  (52a) 

 
**

*
*

iiii
i

i e
r

u
i




 , (52b) 

 
**

*
*

iiii
i

i e
z

w
zzi

 



 ,  (52c) 

 




















*
*

*
i

i
i upI

r

w
rzi

 , (52d) 

Substituting from equations (27-30), (47-48) and (50-51) into equations (52), we get 

 

 

*
1

1 1 1 1 1 0 1 1 1

2
1 12 2 2

1 1 1 1 1 0 1 1 1

1

( ) ( )

( 1) ( ) ( )

rr

j

j j j j j

j

C m m I m r I m r
r

q
A q k s I r I r

r


 


   



 
  

 

 
     

 


 (53) 

 

 

*
2 2

2 2 2 2 2 0 2 1 2 2 2 2 2 0 2 1 2

2
2 2 22 2 2

2 2 2 2 2 2 2 2 2 2 0 2 1 2

1

2 2 22 2 2

2 2 2 2 2 2 2 2 2 2 0 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

rr

j

j j j j j

j

j

j j j j

C m m I m r I m r D m m k m r k m r
r r

q
A q k V s I r I r

r

q
B q k V s K r K

r

 
  

 
       

 
       



   
      

   

  
      

  

    



)j r
 
 
 

 (54) 

2
*

2 2 21
1 1 1 1 1 1 1 1 1 1

1

( ) ( ) 2 ( )rz j j j

j

I
C m m p I m r p A q I r

p


 



 
   

 
 , (55) 

 
2

*
2 2 22

2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 1 2

1

( ) ( ) ( ) 2 ( ) ( )
2

rz j j j j j

j

m m p C I m r D K m r p q A I r B K r
Ip


   



 
       

 
  (56) 

   

   

*
2 2 2 2 2 2

1 1 1 1 0 1 11 1 11 11 1 11 11 0 11

2 2 2 2 2

12 1 12 12 1 12 12 0 12

( ) ( )

( )

zz C m I m r A k k k s I r

A k k k s I r

     

   

      
 

     
 

, (57) 
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   

    

*
2 2

2 2 2 2 0 2 2 2 2 0 2

2
2 2 2 2 2

2 2 2 2 2 2 1 2 2 2 2 2 0 2

1

2 2 2 2 2

2 2 2 2 2 2 1 2 2 2 2 2 0 2

( ) ( )

( )

( )

zz

j j j j j j j

j

j j j j j j j

C m I m r D m K m r

A k R k k V s I r

B k R k k V s K r

  

      

      



 

     
 

     
 

 . (58) 

Applying Laplace and Fourier transforms into the boundary conditions of the problem, we obtain 

,0
*

2


rr
 ,0

*

2


rz


* *

2 ( , ) ,f s p   at r = b.  (59)  

Applying Laplace and Fourier transforms into the continuity conditions of the problem, we obtain 

,
**

21
  ,

**

21
uu   

**

21
ww  , 

**

21 rrrr
  , 

**

21 rzrz
  , 

1 2

* *

q q , at r = a (60) 

 Applying the boundary and continuity conditions (60) and (61), we arrive at a linear system of nine equations which 

contain nine parameters A11, A12, A21, A22, B21, B22, C1, C2 and D2 as following 

  

  

2 22 2 2 2
2 2 2 0 2 1 2 2 2 2 0 2 1 2

2
2 2 22 2 2 2

2 2 2 2 2 2 2 2 2 2 0 2 1 2

1

2 2 22 2 2 2

2 2 2 2 2 2 2 2 2 2 0 2 1 2

( ) ( ) ( ) ( )

( ) ( )

( ) (

j j

j j j j j j j

j

j j

j j j j j j

m m
C m I m b I m b D m k m b k m b

b b

R q
A R k k V s I b I b

b

R q
B R k k V s K b K

b

 
 


      


      



   
     

   

  
      

  

    



) 0jb
 
 

 

 (61a) 

   
2

2 2 2

2 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2

1

( ) ( ) ( ) ( ) 0j j j j j j j

j

m V s C I m b D K m b k R A I b B K b    


        (61b) 

2
2 2

2 2 2 0 2 2 0 2

1

( ) ( ) ( ) 0j j j j j

j

k V s A I b B K b 


      (61c)  

 
2

2 2 2 2

1 1 0 1 2 2 2 0 2 2 0 2

1

( ) ( ) ( ) ( ) ( ) 0j j j j j j j j

j

A k s I a k V s A I a B K a  


        (61d) 

1 1 1 1 11 11 1 11 12 12 1 12 2 2 1 2

2

2 2 1 2 2 2 2 1 2 2 2 1 2

1

( ) ( ) ( ) ( )

( ) ( ( ) ( ) ) 0j j j j j j j

j

C m I m a A I a A I a C m I m a

D m K m a R A I a B K a

   

   


  

   
,  (61e)  

   

 

  

2 2 2 2 2

1 1 0 1 11 11 11 0 11 12 12 12 0 12

2
2 2 2 2

2 2 0 2 2 2 0 2 2 2 2 2 2 0 2

1

2 2

2 2 2 2 2 0 2

( ) ( ) ( )

( ) ( ) ( )

( ) ) 0

j j j j j

j

j j j j j

C m I m a A k I a A k I a

C m I m a D m K m a A k R I a

B k R K a

   

  

  



   


    



  


  (61f) 

 

 

2 2 2 2 21 1 11 1
1 1 1 0 1 1 1 11 1 11 1 11 11 0 11 1 11

2 2 2 2 12 1
12 1 12 1 12 12 0 12 1 12

2 22 2 2 2
2 2 2 0 2 1 2 2 2 2 0 2 1

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) (

m
C m I m a I m a A k k s I a I a

a a

A k k s I a I a
a

m m
C m I m a I m a D m k m a k m

a a

  
    

 
   

 
 

   
        

   

 
     

 

 
    

 

  

  

2

2
2 2 22 2 2 2

2 2 2 2 2 2 2 2 2 2 0 2 1 2

1

2 2 22 2 2 2

2 2 2 2 2 2 2 2 2 2 0 2 1 2

)

( ) ( )

( ) ( ) 0

j j

j j j j j j j

j

j j

j j j j j j j

a

R
A R k k V s I a I a

a

R
B R k k V s K a K a

a

 
      

 
      



 
 
 

  
      

  

 
      

 



 (61g) 
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   

2 2 2 2

1 1 1 1 1 11 11 11 1 11 12 12 12 1 12

2
2 2 2

2 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2

1

( ) 2 ( ) 2 ( )

( ) ( ) ( ) ( ) 0j j j j j j j

j

C m s I m a A k I a A k I a

m V s C I m a D K m a k R A I a B K a

    

    


   

 
        

 


  (61h) 

2 2 2 2

11 11 11 1 11 12 12 12 1 12

2
2 2

2 2 2 2 2 1 2 2 1 2

1

( ) ( ) ( ) ( )

( ) ( ) ( ) 0j j j j j j

j

A k s I a A k s I a

k V s A I a B K a

   

    


  

     
 (61i) 

where 
2

1

2

1

1

1










s

s




  

thus, the solution to the problem in the transformed domain is obtained by solving the above system. 

 

 

 

4. NUMERICAL RESULTS 

The Double inverse of Laplace Fourier transforms was obtained by using the inversion formula of the transforms and 

Romberg numerical integration technique. FORTRAN programming language was used on a personal computer. The 

accuracy maintained was 5 significant digits for both the numerical integration and the inversion of the Laplace 

transform. The numerical method outlined in [31] was used to obtain the inverse Laplace transforms for the temperature, 

displacement and stress distributions.  

During numerical computations, the inner material was taken to be made of pure aluminium material and the outer 

material was taken to be made of pure zinc material. The constants of the problem were taken as shown in table1. 

Table -1 The Material constants  

a=1 μ1 =3.86×10
10 

T0 = 293 ρ1 =2707 

b = 2 μ2 = 3.88× 10
10

 τ1 = 0.02 ρ2= 7144 

c1=896 k1 =204 τ2 = 0.005  h = 0.2 

c2 = 384.3 k2 = 112.2 λ 1 = 4.7×10
10 

λ2 = 9.07×10
10 

αt1=8.418d-5 αt2=4.106d-5   

 

 

The computations were carried out for the function 



 


otherwise

hzhif
tzrf

,0

,1
),,( , at r = b. 

where h is a width of temperature distribution, applying Laplace and Fourier transforms, 

we obtain 

ps

ph
spb

sin2
),,(

*
 . 

The investigation of the effect of the outer cylinder whose fractional derivative parameter 2  at z = 0 in the radial 

direction has been carried out in the preceding discussions. 

The computations were performed for a wide range of ( 0 2r  ), different values of  2 0.5,0.999,1  , one 

value of time, namely 0.13t   and 1 1  . This enables us to represent the typical numerical results in Figures (1) - 

(3), for the temperature , displacement u and the thermal stresses rr , respectively. These figures show that for 

2 0.999,1   the waves not pass to the inner media and it will vanish in the outer media whose fractional parameter 

α1 = 1. This result is in agreement with the generalized theory of thermoelasticity that the waves have finite speed. While 

2 0.5   the waves will pass to the inner media since it has infinite speed. This result is consistent with [24].  

The investigation of the effect of the outer cylinder whose fractional derivative parameter 2  inside the outer cylinder 

r = 1.5 in the direction parallel to the axis of the cylinders has been carried out in the preceding discussions. 
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Fig. 1 α2 radial effect on the temperature distribution for α1=1 and t = 0.13 

 
Fig. 2 α2 radial effect on the displacement distribution for α1=1 and t = 0.13 

 
Fig. 3 α2 radial effect on the stresses distribution for α1=1 and t = 0.13 
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Fig. 4 α2 axial effect on the temperature Distribution for α1=1 and t = 0.1 

 
Fig. 5 α2 axial effect on the displacement distribution for α1=1 and t = 0.1 

 
Fig. 6 α2 axial effect on the stresses distribution for α1=1 and t = 0.1 

 
Fig. 7 α1 radial effect on the temperature distribution for α2=1 and t = 0.2 
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Fig. 8 α1 radial effect on the displacement distribution for α2=1 and t = 0.2 

 
Fig. 9 α1 radial effect on the stresses Distribution for α2=1 and t = 0.2 

 
Fig. 10 α1 radial effect on the temperature distribution for α1= 1 and α2= 1 

 
Fig. 11 Displacement Distribution for α1= 1 and α2= 1 
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Fig. 12 Stresses Distribution for α1= 1 and α2= 1 

 
Fig. 13 Temperature Distribution for α1= 1 and α2= 1 

 
Fig. 14 Displacement Distribution for α1= 1 and α2= 1 

 
Fig. 15 Stresses Distribution for α1= 1 and α2= 1 
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Figures (4), (5) and (6), respectively, exhibit the temperature, displacement and stress distributions for a wide range of (

1 1z   ), 2 = {0, 0.999, 1} when t = 0.1, 1 = 1 at r=1.8 parallel to z-axis. Obviously, the effects of the fractional 

parameter 2 on the field profiles in the axis direction are noticeable than the radial direction. Also for α2 =0.999, 1 the 

waves vanish rapidly than when α2 = 0.5. Thus the wave has the finite speed for α2 =0.999, 1 while for α2 = 0.5 it has 

infinite. 

The investigation of the effect of the inner cylinder whose fractional derivative parameter 1  at z = 0 in the radial 

direction has been carried out as follow. 

Figures (7), (8) and (9), respectively, depict the temperature, displacement and stress distributions for 1 = {0, 0.999, 1}, 

2 = 1 when the time is large enough to penetrate to the inside media, namely, t = 0.2. These figures show the effects of 

the inner media fractional parameter 1. We notice that for α1 = 0.999, 1 the waves have finite speed while for 1 = 0.5 

the wave has infinite speed. 

Finally, the computation was carried out for different values of time, namely, t={0.1, 0.2, 0.4}. The temperature, 

displacement and stress profiles are shown at z = 0 and r =1.5 in figures (10-12) and (13-15), on respectively. These 

figures show that as the time increase as the waves penetrates the media to a larger distance. 

 

 

 

5. CONCLUSION 

When the fractional time parameter is close to one, then the solution seems to behave like the generalized theory of 

thermoelasticity. This result indicates that the fractional model of thermoelasticity may preserve the advantage of the 

generalized theory of thermoelasticity that the velocity of waves is finite. 

The fractional parameters have a noticeable effect in the axial direction of the cylinders more than the radial direction.  
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