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ABSTRACT

In this work, we consider a two-dimensional problem of an infinitely long solid cylinder consisting of two different
homogeneous and isotropic thermoelastic materials within the context of the fractional order theory of thermoelasticity.
The lateral surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution which
is a function of time t and z. There are no body forces or heat sources affecting the medium. Laplace and exponential
Fourier transform techniques are used to solving the problem. The inverse Laplace and exponential Fourier transforms
are obtained using a numerical technique.

The predictions of the fractional order theory are discussed and compared with those for the generalized theory of
thermoelasticity. We also study the effect of the fractional derivative parameters of the two media on the behavior of the
solution. Numerical results are computed and represented graphically for the temperature, displacement and stress
distributions.
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1. INTRODUCTION
Lord and Shulman [1] introduced the theory of generalized thermoelasticity with one relaxation time by using the
Maxwell-Cattaneo law of heat conduction instead of the conventional Fourier’s law. The heat equation associated with
this theory is hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both the
uncoupled and the coupled theories of thermoelasticity. The uniqueness of solution for this theory was proved under
different conditions by Ignaczak [2], Sherief and Dhaliwal [3] and by Sherief [4]. Exact solution for a problem of a
spherical cavity was obtained by Sherief and Saleh [5]. Some problems for a penny-shaped crack and a mode | crack
were solved by Sherief and ElI-Maghraby [6-7]. This theory was extended by Sherief et al. [8] to micropolar media.
Anwar and Sherief [9] studied A Problem in Generalized Thermoelasticity for an Infinitely Long Annular Cylinder
Composed of Two Different Materials.
Fractional calculus has been used successfully to modify many existing models of physical processes. Caputo and
Mainardi [10-11] and Caputo [12] found good agreement with experimental results when using fractional derivatives for
a description of viscoelastic materials and established the connection between fractional derivatives and the theory of
linear viscoelasticity.
The solution obtained by using ordinary derivatives predicts an instantaneous response while that obtained by using
fractional derivatives predicts a retarded response that depends on the history of the applied causes. This is more in
accord with physical observations [13].
The general space-time-fractional heat conduction equation in the one-dimensional case has been formulated by Gorenflo
et al [14]. Povstenko [15] made a review of thermoelasticity that uses fractional heat conduction equation. The theory of
thermal stresses based on the heat conduction equation with the Caputo time-fractional derivative is used by Povstenko
[16] to investigate thermal stresses in an infinite body with a circular cylindrical hole. Povstenko proposed and
investigated new models that use fractional derivative in [17-18].
The fractional order theory of thermoelasticity was derived by Sherief et al. [19]. It is a generalization of both the
coupled and the generalized theories of thermoelasticity. Sherief and Abd EI Latief [20, 21] have solved a 1D problems
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for a half space and for spherical cavity in this theory, solved a 2D problem of half- space [22], studied the effect of the
fractional derivative parameter on fractional thermoelastic material with variable thermal conductivity [23] and applied
this theory to a 1D problem for a half-space overlaid by a thick layer of a different materials [24].

Recently, Hamza et al. [25] derive a new theory of thermoelasticity associated with two relaxation times using the
methodology of fractional calculus, Hamza et al. [26] have solved 1D problems in the context of this theory, derive a
new mathematical model of Maxwell's equations in an electromagnetic field using the physical principles of fractional
calculus[27]. Some contribution works that use fractional calculus can be found in [28-30].

In this work, we solve a 2D problem of an infinitely long solid cylinder consisting of two different homogeneous and
isotropic thermo elastic materials within the context of the fractional order theory of thermoelasticity [19]. The lateral
surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution. The solution is
obtained for different values of the fraction parameters of the two media. The fractional parameters effects on the media
in radial and axial directions are discussed.

2. FORMULATION OF THE PROBLEM
We consider a two-dimensional problem of an infinitely long solid cylinder consisting of two different homogeneous and
isotropic thermo elastic materials. The inner layer occupies the region 0 <r < a, - o0 <z < o0 and the outer layer occupies
the region a <r <b, - o0 <z <o, where (», ¢, z) are cylindrical polar coordinates with unit vectors e, g, ande,. The lateral
surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution which is a
function of time t and z. There are no body forces or heat sources affecting the medium.
Due to the physical of the problem, all considered quantities will depend on r, zand t only.

The displacement vector U; takes the form

u; =uj(r,z,t)e, +wi(r,z,t)e,,i=12 @
where the suffix 1 refers to the inner medium and the suffix 2 refers to the outer medium.
The cubical dilatation e; in medium i is thus given by

Ui Ui Wi 10 ), M

==—(ruj )J+— . )
or r oz ror 0z

The equation of motion in vector form can be written as

e =

2

# V2U, + (4 + ) graddivu;, -y gradT, =p, %t%l : @)

where A;, W are Lamé’s constants, pj is the density, T; is the absolute temperature and Yj is a material constant given

by (34j + 24 ) aj where o is the coefficient of linear thermal expansion. V? is Laplace's operator in cylindrical
polar coordinates, given by

2 2
v? _8_+1(6)+8_

- or? rlor 922
Applying the divergence operator to both sides of equation (3), we obtain
2
2 2 0°e;
(i +2u)Ve — 7 VT = pi—. @)
ot
The time fraction heat conduction equations [19] for both media are given by
0% | oT; 0% | ogy
kiVZTi = piCE. | 1+7; _I+7iT0 1+ 7 —i=1,2. (5)
i o | ot a;
ot ot

where k; is the thermal conductivity, ¢; is the specific heat at constant strain, Ty is a reference temperature assumed to be such
that | Ti-To [<<1, Tj is the relaxation time and ¢ is the fraction order parameters for the two media, satisfy 0 < o; < I in the

Caputo sense.
The constitutive relations have the form:

OUj
Orr, :Zﬂia_rl"'ﬂi e—7i(Ti —To). (6a)
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u.
gy =244+ e=7i(Ti = To), (6b)
OW:
Oz :Zﬂia_zl"‘;tie_?’i(-ri —To). (6c)
a\Ni aui
Orz; =Hi EJFE ; (6d)
We also have the modified Fourier’s law of heat conduction [19], namely
0“q, oT.
4T -k —L, 7a
qu i ot o i or ( )
0“q,; oT.
_—|—‘L’.—Z|:—k.—ll 7b
qzn i ot a i oz ( )

where q,; and g, are the heat flux components in the radial and z-direction respectively.
Let us introduce the following non-dimensional variables:

(r, 27 u w;)=cn(r,z,u, w,),t" =cnt , 7, =c/“nlr,
* Oij * Vl(Ti _To) x Y
Oj =—J10i =, ¢i19,)= : (q449,)
: (11"'2:“1) (’11"'2:“1) ke (4 +2u)

M+2 c
where Cq = 1 a} = PIVEL .
\ kq

Using the above non-dimensional variables, (dropping the asterisks for convenience), The governing equations (3)-(7a) in
non-dimensional form become

0°u;
v2u;+(B7 -1 grade; —ﬂizgigfad@.:ﬂizVi?}'v )
02e;
Vzei —§iV2¢9i =V 6t—2|, )
aO!iqri ae,
Qi +7 ot @ ==X ar (10a)
0“q,; 06,
4. +7 o ==X R (10b)
o ] a; .
Vzei = Uj 1+‘L’i o %—i—é‘i 1+Ti o ai, (11)
ot% | ot ot% | ot
O Uj
O'rri:a)ia_rl"‘ i & —9i6;., (122)
Ui
O g, = @i T+ Vi € —5i9i , (12b)
8VV'
Ty, = O 6—Z'+ Vi & —5i6;, (12)
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aWi 8ui
Orzi =i | — +— | (12d)

Orgi =Ogi = 0, (12¢)

Vi _AitHi, _pilat2m) o ri(A+2m)
’ﬁl_ [ -

" 4i pr(di+2u) 7 i+ 2)

gim Yi 71lo nUi:ﬂ:a)i:( 2 lei:( Ai lei:k_i
Kimy (A +211) m A +2n N +2m ky
The boundary conditions of the problem are assumed to be as follows:
ow=0, o,=0,60="1(z) ,atr=b (13)
where b is the radius of the lateral cylinder.
The continuity conditions of the problem are given by

=0, , Uy=Up , W =Wy 01 =0r2.0r1 =012, Oy =0,.atr=2a (14)
where a is the radius of the inner cylinder.

3. SOLUTION IN THE TRANSFORMED DOMAIN
Applying the Laplace transform with parameter s defined by the relation

?(r,z,s):L[f(r,z,t)]:Te—St f(r,zt)dt.

0
to both sides of equations (8-11), we obtain
V2u, +(B? —1) grade; — %, grad 6; = BV s?u, (15)
EV20i=(V2 -Vis?)ei, (16)
an A+7s%)=—x %: 17
or

|:V2 —UiS(l—i- TiSai ]} 5i =8iS(1+ TiSai )é| (18)

Eliminating éi between equations (16) and (18), we get

{VA' —[(Sl)i +cfi8iS)(;l+ TiSai )-l— SZVi JV2 +ViUi83(%[+ Z'iSai )}5| =0, (19)
The above equation can be factorized as
(Vz - ki%_)(vz - k|22 )5. =0 (20)

where kij ,i=1,2,j=1,2, are the roots of the characteristic equation,

{k4 —[(Sl)i +.§i8i5)(§l+ Z'iSO(i )-l— SZVi sz +Vil)i83(1+ TiSai )}5| =0 (21)
The solution of equation (20) can be written in the form
éi = éil +g’i2 where 6;; is the solution of the equation.

(v2-k2Joij =0, i,j=12, (22)
Similarly eliminating é between equations (16) and (18), we get
{VA' —l(SUi +§i8i5)(;l+ Z'iSOli )—i— SZVi JVZ +Vil)i83(%[+ Z'iSO!i )}é| =0. (23)
Applying Fourier transform with parameter p defined by the relation,
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£7(r, pO=FLF(r,2,0)]= [P f(r,2,)dz, where i=/~1

—00

to both sides of equation (22), we obtain
o° 190 —*
orc ror !

2 .2 2
Where, @' = p~ +kj;

Equation (24) is the modified Bessel differential equations whose solution is
. 2
0 =D A (ki V)1 (@;r)+By (k;* -V, s?)K, (ar). (25)
j=1

where Iy and K, are the modified Bessel functions of the first and second kinds ,respectively of order zero and A;; , Bjjare
parameters depending on s and p.
The function K, (g r) is not bounded at the inner region. The solution is given by

% 2
01 :zAli(kljz —SZ)IO(a)ljr) , (27)
j=1
. 2
0, :Z (kzzj _VZSZ)I:AZj Io(a)zjr)"'sz Ko(a)zjr)] : (28)
=1
In a similar manner, we obtain
- 2
er=> A, ky’ 1y (ayr) . (29)
j=1
. 2
82:§zz kzzj I:Azj' Io(a)zj'r)"'sz Ko(a)z,'r)} : (30)
j=1
Substituting from equations (27-28) into equation (17), we get the heat flux components in the form
o 1 - 2 2
., ZW;AH @y (klj =S )Il(a)ljr) (31)
2
- Z a)zj'(kzzj _VZSZ)I:Azj l, (@,;7)-B; Kl(a)zjr)} (32)

r2 1+TS j=1

Using the vector identity, curl curl (u)=grad div (u) —v? (u) then equation (8) takes the form

2
2 _ _g2rarad o — g2y O Yi
Bi" grade; —curlcurlu; - gi"gigrad 6; = i°V; — (33)
ot
The second term of the above equation upon equation (1) has the form
o%w; 0% 1o, oui) 10( ow
curleurlu; = —— |8 +| = ——|r—1 le;. (34)
oroz 72 ror az ror{ or
Substituting from equation (34) into equation (33) and equating components of e, and g, on both sides, we obtain
2 2.
Zatd I = , 35
Bi or GI’E)Z P — ,B| é/l =GV, at2 (35)
2
2 08 18(8uij18( j 2 8W|
| — |+ — = . 36
Ao vorl"a rarl o w {, =AY e (%)

Differentiating equation (2) with respect to r, we obtain
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200 i
oW _ o8 9 lg(rui) , 37)
owor or or|r

Substituting from equation (37) into equation (35), we get
o(10 a2
{&’(r 8r( )j e ) ﬂl ot2 } ((1 :BI )Ei +ﬂ| i6 ) (38)

of;
Assuming that U; = 6_I equation (38) reduces to
r

2
;{ - B, a }Fair((l—ﬁiz)eﬁﬂizﬁﬂ)- (39)

The above equation is obtained by using the relation
130 f
v2- —_—(sz) (40)
or or
Integratmg both sides of equation (39) with respect to r, we get
i 2
V2 - AV, a_ fi =|@1-
bi o2 =\( ﬂl )& +,B| Gi6; (41)

Applying Laplace and Fourier transforms to both sides of equation (41), we obtain

li(rij_mﬁJ?T ~(@-p i+ p26 0 “)

ror\ or
where m? = gV s2 + p?
1

Substituting from equations (27-30) into the right-hand side of equation (42), we obtain

¢ 10 2 7~ 2 2.2
F-’-F@_I‘_ml fl:zAlj(klj - PSS )Io(a)ur) (43)
=
”? 190
(?+F8I’_m jf 2—§zz [ AZ] O(a)Z]r)(k ﬂzzvzsz) )

+B,; Ko (@ 1) (K55 =BV 5°) ]
The solutions of equations (43) and (44) take the form

f,=C,ly(mr)+Ayl, (o r)+A,l,(@,r) (45)
e 2
f, :Czlo(mzr)"'DzKo(mzr)"'z §Z(A2j IO(a)er) +szKo(a)21r)) (46)
=
Thus the solution of equation (38) takes the form
J— 2
u, =Cmyl (mr)+> A,a,l(emy;r) (47)
=
J— 2
u, :C2m2|1(m2r)_DzmzKl(mzr)"‘Z §2(A2jq2j |1(a’2jr) _BquZJKl(a)er)) (48)
=

In order to find the displacement components w; applying Laplace and Fourier transforms to both sides of equation

wi :i[éf —lg(rﬂrﬂ, | =1 (49)

594



Khader et al Euro. J. Adv. Engg. Tech., 2018, 5(8):589-603

Using the equations (29- 30) and (47-48), we obtain

| 2
:B C,ml,(m,r)+ pZZAlJ 0(coljr)} (50)
j=1
—
w, :E{ mzz(C2|0(m2I’)+D2Ko(m2I’) )
2 (51)
+é/2 pZZ[AZ] 0(w21r)+BZJK (a)ZJr):'}
j=1
Applying Laplace and Fourier transforms into the equations (12), we obtain
—%* 86* % _*
O i =a)i—|+l//i e —9oibi , (52a)
or
—% _I —% _*
O 4i = O —r+l//i €j —5i0| , (52b)
—%* 8V_V* % _*
C i =0 ——+yie —50i, (52¢)
0z
o, = 0 [aairl +1 puj ] (52d)
Substituting from equations (27-30), (47-48) and (50-51) into equations (52), we get
E;1=Clml[a)lmllo(mlr)—%Il(mlr)}
(53)
2 2 2 2 qua)l
+Z Al] (a)lqu +k1j (y, =1 +s )Io(a)ljr)_ Il(a)ljr)
i=
0”2 szzliw o(mzr)_%ll(mzr)}*‘D2m2|:w2m2ko(m2r)+&k1(m2r):|
: 2 2 2 é’ZqZJ 2 (54)
+Z AZ] (a)ZC:Zqzj +(l//2§2+§2)k2j —ON ;S )Io(wzjr)_ I, (@ @, ; r
j=1
2 gzqzjwz
+BZJ (a)2§2q21 +(w,8, - 5)k +0) 8 )Ko(a)zjr)-i-le(a)er)
— ol 2
O'rz1=lT{C1m1(m12 + pz)ll(mlr)+2pzzAlj qy; 1, (e r)] (55)
j=1

Or2 =;)|::){m2(m22 + pz)[cz |1(m2I’)—DZKl(mZI’)]+2§2pZZZZ 0,; |:A2j|1(w2j r)_BZjKl(ijr)]} (56)

Tui= @Cm{1,(mr)+A,, [0)1 (k121 + 0)121)+‘/’1k121 _(k121 =S 2)] lo(@r)

+A, |:a)1(k122 +a)122)+1//1k122 _(klzz _32)] lo(@,r)

(57)

595



Khader et al Euro. J. Adv. Engg. Tech., 2018, 5(8):589-603

Cus =C,w,m’1,(m,r)+D,m,m K (m,r)
; A k2 +R.. w? k2 =6, (k2 =V.,s?) | I

+Z 2j [a’z(gz 2j T 2ja)2j)+l//1§2 2j 2( 2j TV oS )] o(a’2jr)- (58)
=

+B,; [a’z(é,zkzzj +R2jw22j )+‘//1§2k221 _52(k221 _stz):| Ko(a’zjr)}

Applying Laplace and Fourier transforms into the boundary conditions of the problem, we obtain

—% —% — —1

c,,=0, 0,,=0, 0, =f (s,p) ,atr=h. (59)
Applying Laplace and Fourier transforms into the continuity conditions of the problem, we obtain

—% —% —%* —% —% —% —% —% —% —% — —

0,=0, ,Uj=U, , W =W, 0,,=0,,,0,=0,,.0=(, ar=a (60)

Applying the boundary and continuity conditions (60) and (61), we arrive at a linear system of nine equations which
contain nine parameters A1, Asz, Az, Az, Bar, Bay Cq, C, and D; as following

C. | mita(mp)- M1, p) [+,  axm, (m) - A" m )|

2 R,.q,: (61a)
+Z {Azl' |:(w2R2ja)22j +(//2§2k22]. _52(k22j _stz))lo(wzjb)_ 2](:)2]@2 Il(ijb):|
j=1
2 2 2 2 RquZja)z _
+B,; (szijzj' +y,00Ky, _52(k2j V8 ))Ko(a)zjb)+TKl(w2jb) =0
M,AY 5°[C,lu(Mb) ~D K, (MP)]+ D @,k (&, +Ry; [ Agylu(@yy) ~B,; K, (@,b) [=0 (61b)
j=1
2
> (K3 V,57)[A, 1y (@,b)+B,; Ky (@,b) |=0 (61c)
j=1
2 2 2 2 2
Z {Alj (klj =S )Io(a)ua)_(kzj -V,s )[Azj Io(a)zja)"'sz KO(a)Zja):I}:O (61d)
j=1
C,m, 1, (ma)+A, ol (@,8) +Ay,a,l (w,2)-C,m, I (m,a)
2
) (61e)
+D,m,K,(Mm,a)= > R, (A, 0,1 (@,;8) —B,,0,,K,(,,)) =0
=
Cmil (ma)+A, (k121 + a)lzl) lo(@,2) +A,, (k122 + a)lzz) (@)
2
—{cszl0<mza>+ozm§r<o<mza>+z [y (62 Ry, )1o(0,2) 611
j-1
+ By, (G 7 +Ry @, )Ko(a)zja))]}:o
Cll:wlmlzl o(m;a)— am, |1(m1a)]+A11 |:(wlw121 +yik —K ""52) lo(@y2) - Pt |1(w11a)}
+A, |:(a)1a)122 +yiks —k +s 2) lo(o,2) - P |1(a)12a):|
(619)
_Cz |:a)2m22|o(mza)_ L |1(m2a)]_D2 ‘:wzmzzko(mza)_ L kl(mza):l

| E—

R, o, @
_Z {Azj' |:(a’2R21a’221 +‘/’z§2k221 _52(k22j _VZSZ))IO(a)Zja)_%Il(a)Zja)

i1

R, o, o
+By; |:(a)2R2ja)22j +y/2§zk22j _§z(k22j _stz))Ko(wzja)‘*‘ZJ;JZKl(a’zja):H:O
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|:C1m1 1ZS ‘I 1(ma)+ 2A11w11k121| (@) + 2A12a)12k122| 1(5‘)123)]

(61h)
_{mzﬁzzvzsz [CZII(mZa)_DZKl(mZa)]+i a’nkzzj (é,z +R2j )[Azj Il(a)zja)_BZjKl(wzja)J}:O
[
Aoy, (k121 —s? ) (@) +A, a)lz(klzz -5’ ) (w,2)
2 (61i)
_75272 ij(kzzj _V252)|:A2j l, (0,;8)-B,; Kl(a)zja):'zo
=
1+ T]_Sal
where 7=—+——
1+ TzSaZ

thus, the solution to the problem in the transformed domain is obtained by solving the above system.

4. NUMERICAL RESULTS

The Double inverse of Laplace Fourier transforms was obtained by using the inversion formula of the transforms and
Romberg numerical integration technique. FORTRAN programming language was used on a personal computer. The
accuracy maintained was 5 significant digits for both the numerical integration and the inversion of the Laplace
transform. The numerical method outlined in [31] was used to obtain the inverse Laplace transforms for the temperature,
displacement and stress distributions.

During numerical computations, the inner material was taken to be made of pure aluminium material and the outer
material was taken to be made of pure zinc material. The constants of the problem were taken as shown in tablel.

Table -1 The Material constants

a=1 1, =3.86x10™° To =293 p, =2707
b=2 1, = 3.88x 10" 7,-0.02 p,= 7144
=896 k, =204 1,-0.005 h=0.2
C,-384.3 k,-112.2 A1=4.7x10% Ao =9.07x10"7
01 =8.418d-5 0p=4.106d-5

The computations were carried out for the function

1 ,if -h<z<h
="F(r,zt)= ) ,atr=h.
0 ,otherwise

where h is a width of temperature distribution, applying Laplace and Fourier transforms,
we obtain

—* 2sin ph
0 (b, p,s) =P
ps
The investigation of the effect of the outer cylinder whose fractional derivative parameter &, at z = 0 in the radial
direction has been carried out in the preceding discussions.

The computations were performed for a wide range of (0 <t < 2), different values of &, = {0.5,0.999,1}, one
value of time, namelyt =0.13 and ¢, =1. This enables us to represent the typical numerical results in Figures (1) -
(3), for the temperature, displacement u and the thermal stresses O, , respectively. These figures show that for

a, = 0.999,1 the waves not pass to the inner media and it will vanish in the outer media whose fractional parameter
o1 = 1. This result is in agreement with the generalized theory of thermoelasticity that the waves have finite speed. While
o, = 0.5 the waves will pass to the inner media since it has infinite speed. This result is consistent with [24].

The investigation of the effect of the outer cylinder whose fractional derivative parameter &, inside the outer cylinder
r = 1.5 in the direction parallel to the axis of the cylinders has been carried out in the preceding discussions.
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Fig. 1 a, radial effect on the temperature distribution for o;=1 and t = 0.13
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Fig. 2 a, radial effect on the displacement distribution for a;=1 and t = 0.13
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Fig. 3 a, radial effect on the stresses distribution for a;=1 and t = 0.13
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Fig. 7 a4 radial effect on the temperature distribution for o,=1 and t = 0.2
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Figures (4), (5) and (6), respectively, exhibit the temperature, displacement and stress distributions for a wide range of (
—1<7 <£1), % = {0, 0.999, 1} when t = 0.1, ey = 1 at r=1.8 parallel to z-axis. Obviously, the effects of the fractional
parameter «, on the field profiles in the axis direction are noticeable than the radial direction. Also for o, =0.999, 1 the
waves vanish rapidly than when a, = 0.5. Thus the wave has the finite speed for o, =0.999, 1 while for a, = 0.5 it has
infinite.

The investigation of the effect of the inner cylinder whose fractional derivative parameter &; at z = 0 in the radial
direction has been carried out as follow.

Figures (7), (8) and (9), respectively, depict the temperature, displacement and stress distributions for «; = {0, 0.999, 1},
a, = 1 when the time is large enough to penetrate to the inside media, hamely, t = 0.2. These figures show the effects of
the inner media fractional parameter ;. We notice that for a; = 0.999, 1 the waves have finite speed while for &g = 0.5
the wave has infinite speed.

Finally, the computation was carried out for different values of time, namely, t={0.1, 0.2, 0.4}. The temperature,
displacement and stress profiles are shown at z = 0 and r =1.5 in figures (10-12) and (13-15), on respectively. These
figures show that as the time increase as the waves penetrates the media to a larger distance.

5. CONCLUSION
When the fractional time parameter is close to one, then the solution seems to behave like the generalized theory of
thermoelasticity. This result indicates that the fractional model of thermoelasticity may preserve the advantage of the
generalized theory of thermoelasticity that the velocity of waves is finite.
The fractional parameters have a noticeable effect in the axial direction of the cylinders more than the radial direction.
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