
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2018, 5(12):1144-1148

Research Article ISSN: 2394 - 658X

1144

Secure Encoding and Decoding Techniques in Android

Development

Naga Satya Praveen Kumar Yadati

Email: praveenyadati@gmail.com

Contact: +919704162514

Company: DBS Bank Ltd

ABSTRACT

Mobile applications, particularly those developed for Android, often handle sensitive user information.

Ensuring the security of this data is paramount. This paper explores various secure encoding and decoding

techniques in Android development, including encryption algorithms, hashing methods, key management,

secure transmission, and best practices.

Key words: Android, Encoding, Decoding, Security, Vulnerabilities, Best Practices, Libraries, APIs

__

1. INTRODUCTION

Mobile applications are ubiquitous, and with their widespread usage comes the responsibility of protecting user

data. Android, being the dominant mobile operating system, faces unique challenges in ensuring data security

due to its open nature. This paper delves into the realm of secure encoding and decoding techniques, which are

fundamental in safeguarding sensitive information within Android applications.

2. ENCRYPTION TECHNIQUES

2.1. Symmetric Encryption

Symmetric encryption algorithms, such as AES (Advanced Encryption Standard) and DES (Data Encryption

Standard), utilize a single key for both encryption and decryption. In Android development, these algorithms are

commonly employed for securing data stored locally on the device. However, key management becomes crucial

to prevent unauthorized access.

Yadati NSPK Euro. J. Adv. Engg. Tech., 2018, 5(12):1144-1148

1145

2.2. Asymmetric Encryption

Asymmetric encryption, exemplified by algorithms like RSA (Rivest-Shamir-Adleman) and ECC (Elliptic

Curve Cryptography), employs a public-private key pair. While this approach offers enhanced security, it's

computationally more intensive. Asymmetric encryption finds utility in scenarios like secure communication

with servers and digital signatures.

2.3. Hybrid Encryption

Hybrid encryption combines the strengths of both symmetric and asymmetric encryption. It involves encrypting

data with a symmetric algorithm and then encrypting the symmetric key with an asymmetric algorithm. This

approach strikes a balance between security and performance, making it suitable for various Android

applications.

3. HASHING METHODS

3.1. Message Digest Algorithms

Hashing algorithms like SHA-256 (Secure Hash Algorithm 256-bit) and MD5 (Message Digest Algorithm 5)

are irreversible, generating a fixed-size hash value from input data. While MD5 is susceptible to collision

attacks, SHA-256 offers stronger resistance. In Android development, these algorithms are utilized for password

hashing and data integrity verification.

3.2. Salting

Yadati NSPK Euro. J. Adv. Engg. Tech., 2018, 5(12):1144-1148

1146

Salting involves adding a random value (salt) to the input before hashing, thereby thwarting precomputed

attacks like rainbow tables. In Android, salting enhances password security by ensuring that even identical

passwords yield distinct hashes. Combining salting with a robust hashing algorithm fortifies the defense against

brute-force and dictionary attacks.

Overview of the Encryption and Decryption Process: Encryption and decryption are cryptography

components, securing communication through codes and ciphers. Encryption converts the original data or

messages into a secret code. For symmetric encryption, only the one who has the key can understand it. In the

case of asymmetric encryption, the public key is used for encryption, and the private key for decryption. It

ensures that only the intended recipient can access the data.

Key Generation and Management: Key generation and management are essential to the encryption and

decryption process. Generating a key is the first step in secure app development. It will encrypt data so only

those with the password can access the ciphertext. Keep the key safe, as it is critical in decrypting data once

encrypted. Therefore, you must ensure proper key management during secure app development.

Data Encryption and Decryption Process: Encryption and decryption protect data confidentiality, integrity,

and authenticity. These processes are essential tools for securing communication and data protection. Apps like

online banking, e-commerce, messaging, and file sharing use these security measures.

Here’s an overview of these processes:

Encryption:

1. The encryption process starts with plaintext, which can be any data, such as a message, a file, or a

password.

2. The plaintext is then transformed into ciphertext using an encryption algorithm. It is a set of

mathematical operations and rules that scramble the plaintext according to a specific key.

3. The key is a sequence of bits or characters that defines the rules for encryption and determines the

resulting ciphertext.

4. There are different types of encryptions with varying levels of security. You need to choose carefully

what kind of encryption your app needs.

Decryption:

1. Decryption is the reverse process of encryption.

2. It starts with ciphertext, which is an encrypted message.

3. The ciphertext is transformed into plaintext using a decryption algorithm. It is designed to reverse the

encryption process.

4. The algorithm needs the correct key to decrypt the ciphertext and recover the original plaintext.

5. The decryption algorithm will give an incorrect result if you use the wrong key. The decoded text will

be meaningless or unreadable.

Strong Encryption Algorithm: Choose a robust encryption algorithm, such as AES or RSA. It will help protect

your data from malicious attackers. A powerful encryption algorithm provides strong security and resistance to

various attacks. The best type of encryption is the one that requires a combination of both symmetric and

asymmetric algorithms.

Secure Key Storage: Secure key storage is an essential part of mobile app development. It involves keeping the

encryption and decryption keys safe from malicious actors. To do this, developers must use specific methods to

store the unique keys used during encryption and decryption. Use platform-specific secure storage solutions,

like Android’s Keystore or iOS’s Keychain. Others use trusted execution environments (TEE) for storing keys

securely.

4. KEY MANAGEMENT

4.1. Secure Storage

Securely storing cryptographic keys is pivotal in thwarting unauthorized access. Android provides mechanisms

like Android Keystore for storing keys securely. By leveraging hardware-backed storage, keys can be protected

against unauthorized extraction, bolstering the overall security posture of the application.

4.2. Key Rotation

Key rotation involves periodically replacing cryptographic keys to mitigate the impact of key compromise. In

Android development, implementing key rotation mechanisms ensures that even if a key is compromised, the

Yadati NSPK Euro. J. Adv. Engg. Tech., 2018, 5(12):1144-1148

1147

window of vulnerability is limited. Automated key rotation, coupled with secure key storage, enhances

resilience against attacks.

5. SECURE TRANSMISSION

Ensuring the security of data during transmission is vital, particularly in client-server communication. Android

applications leverage HTTPS/TLS protocols to encrypt data in transit, thwarting eavesdropping and tampering

attempts. By enforcing strict certificate validation and employing robust encryption algorithms, Android apps

can establish secure channels for data exchange.

6. BEST PRACTICES

6.1. Input Validation

Implementing rigorous input validation mitigates the risk of injection attacks like SQL injection and XSS

(Cross-Site Scripting). By sanitizing user inputs and employing parameterized queries, Android developers can

prevent malicious payloads from infiltrating the application's data layer.

6.2. Regular Audits

Conducting regular security audits and code reviews helps identify vulnerabilities early in the development

lifecycle. Leveraging tools like static code analyzers and penetration testing frameworks aids in uncovering

security weaknesses and ensuring adherence to best practices.

7. CASE STUDIES

7.1. Banking Application

In a banking application, symmetric encryption is used to secure locally stored transaction data, while

asymmetric encryption ensures secure communication with the server. Key rotation mechanisms are

implemented to periodically update encryption keys, minimizing the risk of data breaches.

7.2. Messaging App

A messaging app employs end-to-end encryption, combining symmetric and asymmetric encryption techniques.

Hashing algorithms are utilized for message authentication, ensuring data integrity. The app undergoes regular

security audits to maintain robust security posture.

8. CONCLUSION

Secure encoding and decoding techniques are indispensable in Android development to safeguard user data

from unauthorized access and tampering. By leveraging encryption algorithms, hashing methods, robust key

management practices, and adhering to best practices, Android developers can bolster the security of their

applications and instill user trust.

REFERENCES

[1]. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric

encryption.” Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, 1997.

[2]. M. Bellare, J. Kilian and P. Rogaway, “The security of the cipher block chaining message

authentication code.” Journal of Computer and System Sciences, Vol. 61, No. 3, Dec 2000, pp. 362–

399.

[3]. M. Bellare, T. Krovetz and P. Rogaway, “Luby-Rackoff backwards: Increasing security by making

block ciphers non-invertible.” Advances in Cryptology – EUROCRYPT ’98, Lecture Notes in

Computer Science Vol. 1403, K. Nyberg ed., Springer-Verlag, 1998.

[4]. M. Bellare and C. Namprempre, “Authenticated encryption: Relations among notions and analysis of

the generic composition paradigm.” Advances in Cryptology – ASIACRYPT ’00, Lecture Notes in

Computer Science Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000.

[5]. M. Bellare and P. Rogaway, “On the construction of variable-input-length ciphers.” Fast Software

Encryption ’99, Lecture Notes in Computer Science Vol. 1636, L. Knudsen ed., Springer-Verlag, 1999.

[6]. D. Dolev, C. Dwork and M. Naor. “Non-malleable cryptography,” Proceedings of the 23rd Annual

Symposium on the Theory of Computing, ACM, 1991. To appear in SIAM J. on Computing.

Yadati NSPK Euro. J. Adv. Engg. Tech., 2018, 5(12):1144-1148

1148

[7]. O. Goldreich, S. Goldwasser and S. Micali, “How to construct random functions.” Journal of the ACM,

Vol. 33, No. 4, 210–217, (1986).

[8]. S. Goldwasser and S. Micali, “Probabilistic encryption.” Journal of Computer and System Sciences 28,

270-299, April 1984.

[9]. J. Katz and M. Yung, “Unforgeable encryption and adaptively secure modes of operation.” Fast

Software Encryption ’00, Lecture Notes in Computer Science, B. Schneier, ed., Springer-Verlag, 2000.

[10]. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from pseudorandom

functions.” SIAM J. Computing, Vol. 17, No. 2, April 1988.

[11]. M. Naor and O. Reingold, “On the construction of pseudo-random permutations: Luby-Rackoff

revisited.” J. of Cryptology, vol. 12, 1999, pp. 29–66.

[12]. C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of knowledge and chosen ciphertext

attack.” Advances in Cryptology – CRYPTO ’91, Lecture Notes in Computer Science Vol. 576, J.

Feigenbaum ed., Springer-Verlag, 1991.

[13]. R. Rivest, “All-or-nothing encryption and the package transform.” Fast Software Encryption ’97,

Lecture Notes in Computer Science Vol. 1267, E. Biham ed., Springer-Verlag, 1997.

[14]. C. Shannon, “Communication theory of secrecy systems.” Bell Systems Technical Journal, 28(4), 656–

715 (1949).

