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ABSTRACT 

Apache Spark is a distributed data processing system that offers superiority over the conventional Hadoop 

MapReduce approach in terms of speed, feasibility, and scalability. Spark operates on distributed data and is 

specifically designed to perform computations in-memory, leading to significantly faster data processing and 

analysis. Moreover, Spark not only supports batch processing but also excels in near real-time processing, 

making it a versatile and powerful tool for a wide range of data processing needs. One of the key advantages of 

Spark is its ability to address the limitations and challenges posed by the MapReduce model. Spark has 

emerged as a market leader by filling the gaps left by MapReduce and addressing the latency issues caused by 

its programming model. Compared to MapReduce, Spark offers faster execution, easier usage of shared 

variables with iterations, and shorter codes. This enables developers and data scientists to write more concise 

and efficient code, resulting in increased productivity and reduced development time. Additionally, Spark is 

particularly advantageous for iterative code and complex computational tasks. Its ability to cache data in 

memory allows for the efficient reuse of intermediate results, further boosting performance. With Spark, 

organizations can process and analyze large volumes of data with ease, enabling them to extract valuable 

insights and make data-driven decisions in a timely manner. In conclusion, Apache Spark is a cutting-edge 

distributed data processing system that outperforms MapReduce in various aspects of distributed data 

processing. Its speed, scalability, and support for both batch and near real-time processing make it an 

indispensable tool for organizations dealing with large-scale data processing and analysis. By leveraging the 

power of Spark, businesses can unlock the full potential of their data and gain a competitive edge in today's 

data-driven world. 
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INTRODUCTION 

Due to its remarkable qualities, the industry has shown increasing interest in transitioning from the previous 

MapReduce approach to Apache Spark for both batch processing and stream processing. This analysis aims to 

explore the distinctions between Apache Spark and the conventional big data storage model facilitated by 

Hadoop. It will delve into the underlying concepts of Spark, showcase its superiority over Hadoop, discuss the 

components utilized in Spark, and illustrate why replacing the Hadoop framework with Apache Spark leads to 

enhanced speed and feasibility in the data processing model. Apache Spark has emerged as a prominent hub for 

storing and processing data in recent years. The reason for its widespread adoption lies in its in-memory storage, 

speed of processing, and scalability compared to previous solutions. Spark's ability to quickly process data is 

attributed to its approach of performing computations in-memory and its efficiency in executing tasks. 

Furthermore, Apache Spark not only supports the batch processing model, but also excels in near real-time 

processing, surpassing its predecessors. The foundation of Hadoop MapReduce has served as an inspiration for 

Spark to revolutionize the big data landscape and address the latency issues caused by the programming model 

of the MapReduce processing engine. Additionally, the industry has recognized that MapReduce lacks the 

comprehensive set of libraries required for efficient distributed data processing. This realization led to the 

emergence of Apache Spark, which fills the gaps left by MapReduce. Spark originated as an academic project at 
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UC Berkeley in 2009 and later became a part of the Apache Incubator in 2013. It achieved the status of a top-

level project in 2014, thereby transforming the big data industry from relying on Hadoop MapReduce to 

embracing Spark. The widespread acceptance and adoption of the Hadoop framework have established 

MapReduce as a dominant engine for big data processing. Spark, the next big thing in big data, is specifically 

designed to operate on distributed data and is currently emerging as a market leader in the industry. The 

fundamental question arises: why Spark and how does it outperform Hadoop for distributed data processing? 

 

OVERVIEW OF DISTRIBUTED DATA PROCESSING 

Most of the distributed data processing systems out there rely on a technique called execution framework. An 

execution framework is a system with a number of well-structured components collaborating for a common 

goal. In data analysis, it orchestrates a number of computing nodes that are running identical tasks on different 

data subsets. A system based on an execution framework needs to focus on a number of seemingly checked 

primes that are assessment and data storage. Assessment is the action of knowing a computing node what it has 

to do, while data storage is the set of activities employed by that place to persistently store data. If the assessing 

and data conversing stages take a lot of time than the conclusion implemented by the analytics process of 

knowing, a large amount of data is lost. 

Overview of Distributed Data Processing. Modern data analysis is performed by software that is distributed on a 

number of interconnected small computers, running in parallel on various data subsets and aggregating results 

towards the completion of the main task. In the big data context (fragmentary data that is too large to fit a single 

server's memory), the execution time or, in broader terms, efficiency has a decisive role. The key aspect in 

distributed data analytics is represented by the system used for executing the analysis. The performance, 

comprehending factors like execution time, data handling, scalability and usage simplicity, strongly depends on 

the execution system's architecture.[1] 

 

SPARK: FEATURES AND BENEFITS 

Spark is already widely used because of its features. Providing an in-memory execution model that is an order of 

magnitude faster than Hadoop MapReduce, Spark has made it possible to operate batch and stream processing 

pipelines in the same stack. Spark makes it easier to provide different types of data analysis on the same data 

using simple transformations in a core interface called RDDs or DataFrames. In addition, it moves some data 

processing pipelines that are complex to maintain from frameworks other than Spark to keep data in memory 

and process it faster. Thus, MapReduce and other representative processing frameworks that have become less 

expressive over time are beginning to be replaced by Spark. 

The Spark stack has two basic components: the Spark Core, which covers the basic functions of the system and 

is associated with other Spark components, such as SQLSpark, Spark Streaming, GraphX, and Spark MLlib. In 

addition to the in-memory execution, Spark provides fault-tolerance features through intermediate results and 

provides derivatives for the classic Hadoop MapReduce operators in a customized RDD interface.[2] 

 
 

HADOOP MAPREDUCE: FEATURES AND BENEFITS 

Hadoop MapReduce is a distributed computing model featuring a central master and several slaves or workers. 

The programming model is based on a theoretical principle with its functions, map and reduce, which takes 

physical records and assembles key values up. The mapper (or map job) processes these key values individually, 

and each record is determined out as a key value matched set. MapReduce computes, shifts keys around and 

practically accepts these outputs as input to reducer (or reduce job) functions. Hadoop MapReduce is a model 

and programming interface for effective batch processing of big data, and it has drastically changed the worth 
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perceived from several Hadoop tasks. The model implements common summarization of statistical parameters 

facilitating efficient queries for ad-hoc search operations. Frameworks such as Apache Mahout, which 

implement algorithms based on mathematical functions, can be described as Hadoop MapReduce computing 

structures. Furthermore, the power of MapReduce is clear and it's also known to be particularly slow for non-

disk bound operations involving clusters that don't have hitherto high percentages of idle resources. 

Traditional batch data processing involves the execution of a sequence of phases. Each phase processes the 

output of the preceding phase and generally reads/writes data to the Hadoop Distributed File System (HDFS). 

MapReduce is designed to dependably process big data using these phases. In fact, because of the requirements 

from Google Search (or Nutch Crawler), it features optimal disk read and write operations and has been broadly 

adopted at big data organizations worldwide. Even though some big data processing jobs might simply be 

executed by other schemes like, for example, Hadoop HDFS (by writing a C++ application), Google Search 

workloads can be implemented most effectively using MapReduce.[3] 

 

COMPARISON OF SPARK AND HADOOP MAPREDUCE 

The recent work on the Spark system has been focused on providing a scalable and efficient distributed 

scheduler that provides key performance benefits for applications that are important to users of more 

sophisticated and complex data processing tools. These applications include iterative data processing (such as 

machine learning algorithms), interactive queries, complex data pipelines, and real-time stream processing. 

Spark is designed to support these applications by providing a general-purpose programming model that is 

implemented on a DAG-based distributed scheduler. Spark's API includes the usual map and reduce functions 

that come with a distributed computing system. Many libraries on top of Spark have benefited from both its 

expressivity as well as its higher-level features. Like many non-Hadoop data processing systems, Spark is 

designed to support additional storage systems (such as key-value stores, relational databases, web services, and 

distributed machines or libraries) and to interwork with them, which is difficult for MapReduce. An increasing 

number of data structures, such as geometric and graph data, are important to many computing applications, and 

although classical MapReduce can be used to manipulate these datasets, their performance is not competitive.[4] 

Hadoop MapReduce's ability to handle petabyte-scale datasets has enabled a number of new, large-scale 

computing tools and frameworks, several of which have MapReduce components. However, MapReduce was 

designed to handle batch processing jobs in a reliable and scalable way and was not designed to address 

interactive and iterative applications. Thus, MapReduce has limited throughput for these iterative workloads. It 

reads and writes only to and from HDFS, making it challenging to build real-time streaming systems and 

interact with other systems and data stores directly. 

 
 

PERFORMANCE COMPARISON 

The data locality issue was focused on improved scheduling algorithms for the cluster resource management, 

especially Tachyon which is a quick SSA Datacenter (SQL Server Analysis Services in Data mode) of the data 

produced during data processing. Among others, from the performance comparison of Stratos and Tachyon, 

repeatable and practical performances can be obtained with graceful degradation thresholds and same 

performance scores, maximum number of faults, simulations of stored data volume, and stored data size of 

Tachyon. Comparing the performance scores and obtained results of using mathematical equations such as 
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Poisson and Exponential, the greedy approximation, performance issues in a distributed file system, differences 

in the maintenance and goal of the work, the techniques, and the parameters can be summarized. There are 

significant performance gains from fault tolerance mechanisms especially under high computational loads, while 

read has a large performance impact. In the view of application utilization, some issues to be discussed include 

industry's map services, plasma physics, large message transport, query system, graph algorithms, email spam 

classification, and High Energy Physics (HEP) application and the application scalability.[5] 

From the benchmark, the impacts of memory usage and serialized data format of Spark can be observed. 

Comparing and contrasting with the Hadoop MapReduce framework, it can be concluded why and how Spark 

overcomes the weaknesses of Hadoop MapReduce in big data processing. In the benchmark, it was used a 

cluster of 240 quad-core beefy machines (each machine includes 96 GB RAM, eight 7200 RPM disks, 1 Gb/s 

switches) with 8-12 times more RAM per a machine than the machines that were equipped in a typical Hadoop 

cluster. With financial resources, this cluster can be built using general purpose reliable, available, and scalable 

commodity hardware, and is more stable as well as practical and cost effective than running on Amazon EC2. 

 

 
 

SCALABILITY COMPARISON 

First, a well-defined question is necessary. Will performance of both systems monotonically increase with data 

set size? Will one or the other one outgrow either the competition or the supplied infrastructural resources? The 

most important question is how applicable are measurements conducted with small-scale workloads to systems 

designed for for processing petabytes of data. In essence, this is a good question how realistic are benchmarks in 

the current ecosystem of big data processing. There are of course more detailed aspects of behavior such 

comparison would shed light on. Such aspects are whether the time of stage initialization will change with data 

set size, and e.g. how the peak performance of each is determined. After setting a question, and selecting 

workloads for experiments, the next step is to ensure you're testing the right system.[6] 

The fact that users can use extra hardware to get around bigger workloads by additional machines doesn't mean 

that it's easy to scale a system by an order of magnitude. Typically, many bottlenecks need to be identified and 

optimized, and a clunky part of the system (or its first iteration) can be a main inhibitor. This is also true about 

frameworks used for big data processing, like Hadoop MapReduce or Apache Spark. Both have managed to 

process data sets of staggering volume in reasonable times. Still, because Spark is touted as faster than Hadoop 

MapReduce, also scalability of Spark as compared to MapReduce. While there are a few comparisons of the 

scale of single MapReduce over Spark application, distinguishing the processing framework from the end-to-

end system and allowing evaluating several points on a trade-off spectrum, there's no comprehensive research 

about how each system under identical conditions behaves and affect the processing, even though it is such an 

essential parameter. 

 

FAULT TOLERANCE COMPARISON 

Thus, every so often, every mapper, which is processing a part of the partition of the input data, emits interim 

results. Every output of the "map" op has its pair (I will explain what it is in a bit) and hence get processed by 

the reducer that receives it, so it does not accumulate anywhere. The records are committed to a file, and at the 

end of the commit, an index (called an index) is created so the records could be grouped and processed in 

parallel. Spark, on the other hand, does not restart from the lost partitions. And, if you never played with Spark, 

the immediate question should be "how is it possible?" Well, as with many other things in Spark, it is the result 

of an uncontested fact: Spark's in memory processing is faster. With its almost real-time processing speed, and 
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its extremely granular control over the cached data, Spark has effectively made the necessity of frequent check 

points obsolete. 

The basic unit of fault tolerance in the data processing world is the data. That is, the work must be redone only 

for the lost data, and not for the data that had been previously processed. Both the projects operate on the same 

principle. How do they achieve this? Hadoop MapReduce and Spark both adhere to the standard checkpointing 

of data processing frameworks. They save the results of the transformations at the predetermined intervals, and 

restart the operation from the last "check point". For MapReduce, this is typically once for each mapper. The 

reason for it is the same as why it is normally <key, value> for the mapper and the reducer: Hadoop uses the 

Java serialization mechanism, which has notoriously bad performance record for anything other than primitives 

and its close relatives, such as String and long.[7] 

 

EASE OF USE COMPARISON 

In a Big Data environment, the amount of processing resources available to a single application is typically not 

limited. For that reason, well-established high-level computing tools, such as MATLAB, R, and Excel, have 

seen limited adoption in distributed settings. With the goal of balancing development productivity and 

processing efficiency, we find that Spark is a compelling tool for implementing distributed data processing 

tasks. Although it is common to discuss Spark with respect to Hadoop MapReduce, Spark and Hadoop have 

distinct designs that cater to distinct use cases. Our analysis has shown that Spark favors implementation 

efficiency, reduced running production overhead, ease of use, and operational speed over scaling capabilities. 

Whether the trade-offs of Spark are appropriate for particular Big Data applications are a function of many other 

factors, such as the scale of input data and the amount of data we wish to output. 

Ease of use is a qualitative metric that is typically difficult to address quantitatively. For this analysis, we 

present a simple qualitative measure of ease of use - the number of steps required to implement a common 

analysis task: word count. The argument can be made that because the implementation of many common 

applications in Spark requires fewer steps, the framework is easier to use. However, frequently the 

implementation of one task requires the implementation of many other auxiliary tasks, and this is the case in 

Spark. The imperative programming style that Spark follows requires more explicit coordination than the 

declarative MapReduce style. Finally, when additional resources, such as unit tests, are taken into consideration, 

implementations in Spark, in general, required more steps. The common paradigm of using SQL for the 

implementation of common analytics tasks did reduce the number of steps in many Spark fields, but using 

explicitly required more than a SQL only implementation in MapReduce.[8] 

 

USE CASES FOR SPARK 

Here are some examples of typical use cases for Apache Spark: 

 
 

1. Machine learning: Use Spark to implement MLlib, an effective way of filling the gap with stand-alone 

model training. Or offload online learning from Storm to Spark as online learning would require faster 

iterations supported by in-memory modules. 

2. Query optimization via Hive-on-Spark or Shark, which converts Hive queries into a comprehensive 

directed acyclic graph of stages in Spark — similar to Spark HiveContext, mostly excluding physical 

constructs and can be problematic where the resources are unavailable in your system. 
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3. Event-driven programming: Consider utilizing Spark for data pattern detection owing to its capability 

as Spark Streaming builds upon Spark’s low-latency micro-batch processing and generalized execution 

framework (to derive a number of machine learning algorithms from live streaming data). 

4. Extract, Transform, Load (ETL) using Spark SQL: Another of the great advantages of Spark is its 

fantastic performance for data analytics. With Spark’s memory computational model, it realizes trade-

offs over disk storage and computation. Since it is disk I/O-bound when executing SQL queries over 

distributed data using PostgreSQL or MySQL, it wouldn’t seem practical to analyze data at a large 

scale.[9] 

 

USE CASES FOR HADOOP MAPREDUCE 

Evaluating Spark's performance is more complex than the factors presented in this article. In general, when 

using Apache Spark, you should aim to fit your dataset in memory. Utilize Spark's lazy evaluation and tight 

integration with Apache Hadoop (through Hadoop FileSystem APIs) to evaluate the amount of data that moves 

through the network. In addition, prior to choosing Spark, evaluate its performance with your organization's 

operational applications. Spark's faster in-memory processing speed by itself is not reason enough to justify 

lowering the performance of another application that is operational within your enterprise. For enterprise-scale 

operational applications, you may even want to implement and compare performance between a combined 

Apache Hadoop and Apache Spark system and an Apache Hadoop-only system. 

 

 
 

There are several use-cases that should steer you towards using Hadoop MapReduce over a distributed in-

memory processing system such as Apache Spark. The two obvious ones are if your dataset is too large to fit 

within the memory of your cluster and if you are running any Hadoop-based application on your cluster. Even 

then, you will have to compare the performance of Apache Spark over HDFS with MapReduce when 

implementing other Hadoop applications such as HBase and Cassandra (or Hadoop external tables in Apache 

Hive) on your cluster. 

 

SPARK VS. HADOOP MAPREDUCE: WHICH TO CHOOSE? 

In this feature comparison, we will address the task of distributed data processing using both Apache Spark and 

Hadoop MapReduce. Among the open-source community, Spark has received attention as being a fast and 

general engine for large-scale data processing. To enable faster computation, unlike MapReduce which writes 

intermediate results to distributed file systems such as HDFS, Spark allows users to persist intermediate results 

in-memory as RDD (Resilient Distributed Datasets) with flexibility about their persistence strategies. In fact, 

our study found that the nested loop algorithm in Spark outperformed Hadoop MapReduce's merge-join 

algorithm for small join relations in-memory join cases with respect to elapsed time. Then, we compare the 

performance of two different join types between the two platforms. Runtime evaluation results show that nested 

loop join in Spark outperforms MapReduce's merge-join algorithms when the input data size is small. 

With the increasing popularity of big data technology, many enterprises have invested in the Hadoop ecosystem, 

a large distributed system that runs on a cluster of commodity hardware to store and process a large amount of 

data. One of its popular processing engines, MapReduce, serves the needs of the community for years, running 
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all kinds of big data processing tasks from scheduling, resource management to guaranteeing fault tolerance. 

However, Hadoop MapReduce has significant limitations when it comes to a newer breed of big data workloads. 

Most visibly, MapReduce forces programs to materialize intermediate results with writes to distributed storage, 

which is a big problem for ad-hoc analytical queries and real-time computations like interactive queries, data 

exploration, and dynamic reports. 

 

CONCLUSION 

I think that the level of the learning period could be lower, at least for the user tools of Spark compared to 

Hadoop MapReduce. MapReduce performed repeatedly like Spark, and the technology gap in learning is much 

too high. For example, if I have to solve a machine learning problem, I would calculate that I will get faster 

answers with Spark, so I don’t need a week to refine the Hadoop MapReduce code to worry about the global 

search time. Suppose the implementation time is made up of learning time and coding time, as Spark is faster, so 

the total optimized-duration is shorter for Spark processes that do complex computational tasks once. Multiple 

iterative computations exemplify such cases. 

Which of Spark and MapReduce wins in the area of distributed data processing? We have discussed different 

computational speeds-up achievable with different factors depending on the type of computation of interest and 

costs with accommodating overheads. Apart from the actual speeds, both offer functionalities and constraints, 

relative development, and assurance differences. Looking at the global picture for all attributes of this study, it is 

a partial win on Spark’s side when one deals with iterative code, for which it was devised. Almost all 

meaningful iterative codes run faster with Spark than with plain MapReduce or Hadoop MapReduce. With 

Spark, it is also somewhat easier to use shared variables with iterations not requiring a reshape of each 

intermediate result back into a sequence of mappers, such as with MapReduce, Hadoop MapReduce (without an 

intermediate reducer inclusively) and iterable addition to Hadoop MapReduce. One makes shorter codes, runs 

faster, and maybe implicates less codes as part of the speed of arguments advantage 7 does. Worse, such wise 

performance related point-v Indices: It is numerous with Spark compared to Hadoop MapReduce. 
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