
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2018, 5(12):1077-1081

Research Article ISSN: 2394 - 658X

1077

Unveiling the Performance Divide: Appium's Slower Performance

Compared to Native Frameworks

Amit Gupta

Software Engineer/Leader, San Jose, CA, USA

*gupta25@gmail.com

ABSTRACT

Mobile application testing plays a crucial role in the field of contemporary software development in

guaranteeing user satisfaction and product quality. Since smartphones and tablets are part of daily life

activities, mobile applications are essential tools for business, work, communication, and leisures. Therefore,

the importance of performance in mobile application testing because customers demand faultless experiences

that are characterized by effectiveness, dependability, and responsiveness. This research examines the

differences between native testing frameworks like XCUITests for iOS and Espresso for Android and Appium,

a popular cross-platform automation tool. The observed difficulties with Appium test automation, such as test

flakiness and excessive execution response times, served as the impetus for this study.

This paper aims to help practitioners and decision-makers choose the best automation tool for their mobile

application testing requirements by shedding light on the performance implications of both Appium and native

testing frameworks. To help with well-informed decision-making about mobile testing techniques, this study

intends to shed light on the variations in test execution time, resource consumption, and dependability between

Appium and native frameworks through statistical data and thorough analysis.

Keywords: Mobile Test Automation, Appium, Espresso, XCUITests, Performance Implications, Native

Frameworks

__

INTRODUCTION

In the digital era, mobile application testing is an essential to software development that ensures apps are user-

friendly and fulfill quality requirements. As smartphones and tablets have become progressively more prevalent,

mobile applications; which serve a variety of purposes in daily life, from work and communication to pleasure

and business, have become indispensable. Thus, it is impossible to overestimate the importance of performance

in mobile application testing since customers expect flawless experiences that are efficient, dependable, and

responsive.

This paper delves into the comparison between Appium, a widely-used cross-platform automation tool, and

native testing frameworks Espresso (Android) and XCUITests (iOS). The motivation for this research stems

from the observed challenges in Appium test automation, where tests exhibited flakiness and prolonged

execution times.

Motivation

Test automation is instrumental in maintaining the integrity of software applications, enabling rapid and

repeatable testing processes. However, the motivation for this research arises from practical challenges

encountered in implementing Appium test automation. The identified issues primarily revolved around the

flakiness of Appium tests and the extended test execution time frame.

Flakiness of Appium Tests: Flakiness in test automation refers to the inconsistency and unpredictability of test

results. Appium, being a cross-platform automation tool, exhibited a degree of flakiness in its test outcomes.

This inconsistency could be attributed to various factors, including device-specific behaviors (version

Yousif A.A et al Euro. J. Adv. Engg. Tech., 2024, 11(1):1-6

1078

controlled), an additional wrapper layer of Appium, network variations, and synchronization challenges arising

from the decoupling of test code from the product code.

Prolonged Test Execution Times: Another substantial motivation for this research was the considerable time the

Appium tests took to complete. The prolonged execution times hindered the testing process's efficiency and

posed challenges in maintaining the agility required in modern software development cycles. These extended

test durations impacted the overall development in the pipeline, delaying feedback loops and impeding the

timely identification and resolution of issues.

Background

The challenges encountered in Appium test automation, leading to the comparative analysis with native

frameworks Espresso and XCUITests. The aim was to assess whether these native frameworks could solve the

observed issues while offering the advantages of seamless integration, improved performance, and reliability.

Appium: A versatile cross-platform automation tool supporting multiple languages, such as Java, Python, and

C#.

Espresso: A native testing framework for Android applications, offering seamless integration with the Android

ecosystem. XCUITests: The native iOS testing framework designed for iOS applications is closely integrated

with the Apple ecosystem.

OBJECTIVE

The primary objective of this research is to provide a comprehensive understanding of the performance

implications associated with Appium and other native testing frameworks. By leveraging statistical data and in-

depth analysis, the study seeks to guide practitioners and decision-makers in selecting the most suitable

automation tool for their mobile application testing needs.

COMPARATIVE ANALYSIS

Development Language:

Appium: Supports multiple languages, requiring developers to adapt to a language outside their primary

development language.

Espresso and XCUITests: Developed in Java/Kotlin for Android and Swift for iOS, respectively, ensuring a

seamless transition for developers already familiar with native languages.

Code Coupling:

Appium: Code is decoupled from the product code, leading to potential synchronization issues and challenges in

maintaining code coherence. Espresso and XCUITests: Tight integration with the native platform ensures code

coupling, facilitating easy maintenance and synchronization with product code.

Setup Complexity:

Appium: Setup can be complex, involving the installation of various dependencies and configurations.

Espresso and XCUITests: Integrated seamlessly into the native development environments, minimizing setup

complexities.

Cross-Platform Capabilities:

Appium: Cross-platform testing is feasible, provided the application workflow remains consistent across

platforms.

Espresso and XCUITests: Primarily designed for their respective platforms, offering optimal performance and

integration.

Performance Implications:

In this section, we will present statistical data to illustrate the performance differences between Appium and

native frameworks. The metrics considered include test execution time, resource consumption, and reliability.

*Data was collected under a controlled test environment for VMware’s WorkspaceONE application where

mobile devices are connected over USB The following table summarizes the key performance metrics: (All

Metric times are average)

Yousif A.A et al Euro. J. Adv. Engg. Tech., 2024, 11(1):1-6

1079

Figure 1: Metric comparison between Appium, Espresso and XCUITest

Two specific use cases are

Table 1: Specific test scenario illustrations

Test Scenario Appium Espresso XCUITests

Login Authentica tion (Seconds) 27.1 16.5 13.8

Data Synchroniz ation 32.4 16.9 15.7

These delay are specific due to delay in Element identification on screen by Appium, which lead me to

investigate further on Element

identification time on each of these framework

Table 2: Comparison based on Element Type

Element Type Appium Espresso XCUITests

Button(ms) 125 80 72

Text Field Input (ms) 160 97 84

Checkbox selection(ms) 120 77 71

Tab bar Icons (ms) 130 85 78

Swipe on Home carousel (ms) 192 109 102

These statistical data clearly highlights substantial performance advantages for native frameworks over Appium

in terms of test execution time, resource consumption, and overall reliability.

So why is Appium so slow over Native frameworks? It could be attributed to multiple factors:

1. Abstraction Layer Overhead: Appium is an abstraction layer, enabling cross-platform automation with

a single codebase. While this offers code reusability, the abstraction layer introduces additional

complexity and communication overhead. This can result in slower execution compared to native

frameworks that directly interact with the platform-specific automation tools.

2. JSON Wire Protocol and WebDriver Communication: Appium uses the WebDriver protocol and

communicates with the mobile application under test through the JSON Wire Protocol. This layer,

though essential for cross-platform compatibility, introduces a level of indirection that might contribute

to a performance gap compared to the more direct interaction in native frameworks

3. Client-Server Architecture: Appium follows a client-server architecture, with the Appium server acting

as an intermediary between the automation scripts and the mobile application. This architecture

introduces an additional layer of communication, potentially leading to delays in command execution

compared to the more streamlined communication in native frameworks.

Figure 2: Architecture with an additional layer

Yousif A.A et al Euro. J. Adv. Engg. Tech., 2024, 11(1):1-6

1080

4. Automation Script Execution: Appium allows scripts to be written in a variety of languages, offering

flexibility but sacrificing some performance optimization. In contrast, native frameworks like Espresso

and XCUITest use languages closely tied to their respective platforms, enabling more direct and

efficient communication with the application.

5. Lack of Platform-Specific Optimizations: Native frameworks benefit from close integration with the

operating systems, allowing them to fully leverage platform-specific features and optimizations.

Appium, being a cross-platform tool, may not exploit these platform-specific optimizations to the same

extent, contributing to differences in performance.

Challenges and Benefits

This section discusses the challenges and benefits associated with Appium.

Challenges: - Selective Language Adoption: Appium's support for multiple languages can lead to difficulties in

language adoption and proficiency among the development team.

Decoupled Code: Decoupling test code from the product code in Appium may result in synchronization issues

and difficulties in maintaining code coherence.

Setup Complexity: The setup process for Appium can be complex, requiring the installation of various

dependencies and configurations.

Benefits: -Cross-Platform Testing: Appium provides cross-platform testing capabilities, offering efficiency when

the application workflow remains consistent across platforms.

CONCLUSION

While Appium excels in providing cross-platform testing capabilities, its architectural design introduces certain

performance limitations compared to native frameworks like Espresso and XCUITest. This paper underscores

the superiority of native frameworks (Espresso and XCUITests) over Appium,especially when applications are

written in their native languages. The statistical datapresented validates the observed performance

implications,emphasizing the efficiency,reliability, and streamlined integration provided by native frameworks.

As a result, this study has illuminated the critical function that testing mobile applications plays in modern

software development, highlighting the importance of performance in guaranteeing user happiness and product

quality. Robust testing procedures are now necessary due to the increasing need for faultless mobile experiences

since smartphones and tablets have become vital tools in many facets of everyday life.

Important distinctions in performance consequences have been brought to light by a comparative study between

native testing frameworks like Espresso and XCUITests and the well-known cross-platform automation tool

Appium. The practical difficulties with Appium test automation, such as test flakiness and excessive execution

times, served as the driving force for this study. These difficulties highlighted the necessity of a comprehensive

study of different testing strategies.

For test execution time, resource consumption, and dependability, the statistical data in this study showed that

native frameworks outperformed Appium in terms of performance. It was discovered that Appium performed

worse because of the abstraction layer overhead, communication protocols, client-server architecture, automated

script execution, and lack of platform-specific optimizations. The study included Appium's advantages as well

as drawbacks. For example, it discussed how cross-platform testing capabilities might be useful when

application workflows are maintained across platforms.

This research aims to help decision-makers and practitioners choose the best automation tool for testing mobile

applications. This study adds to informed decision-making in mobile testing strategies by thoroughly

understanding the performance implications associated with Appium and native testing frameworks. This will

ultimately improve the quality and dependability of mobile applications in the digital landscape.

FUTURE DIRECTION

Future research can explore advancements in mobile test automation tools, considering emerging technologies,

evolving development practices, and the impact of platform updates on testing frameworks. Further research

could also explore to improve the performance improvements in Appium architectures by optimizing

communication protocol, dynamic element identification strategies, platform-specific optimizations, and native

code integration.

Yousif A.A et al Euro. J. Adv. Engg. Tech., 2024, 11(1):1-6

1081

REFERENCES

[1]. Wasserman, A.I. (2010). Software engineering issues for mobile application development. Proceedings

of the FSE/SDP workshop on Future of software engineering research - FoSER ’10.

doi:https://doi.org/10.1145/1882362.1882443.

[2]. Hyungkeun Song, Seokmoon Ryoo, Jin Hyung Kim. ” An Integrated Test Automation Framework for

Testing on Heterogeneous Mobile Platforms”, 2011 First ACIS International Symposium on Software

and Network Engineering, 2011.

[3]. Muccini, H., Di Francesco, A. and Esposito, P. (2012). Software testing of mobile applications:

Challenges and future research directions. 7th International Workshop on Automation of Software Test

(AST). doi:https://doi.org/10.1109/iwast.2012.6228987.

[4]. Nagowah, Leckraj, and Gayeree Sowamber. "A novel approach of automation testing on mobile

devices", 2012 International Conference on Computer & Information Science (ICCIS), 2012.

[5]. S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating android applications’ cpu energy usage

via bytecode profiling,” in 2012 First international workshop on green and sustainable software

(GREENS). IEEE, 2012, pp. 1–7.

[6]. A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing performance bugs,” in Proceedings

of the 10th Working Conference on Mining Software Repositories.IEEEPress, 2013, pp. 237–246.

[7]. G. Lim, C. Min, and Y. I. Eom, “Enhancing application performance by memory partitioning in

android platforms,” in 2013 IEEE International Conference on Consumer Electronics (ICCE). IEEE,

2013, pp. 649–650.

[8]. Madhuri Kishan Kulkarni and Prof. Soumya A,“Deployment ofCalabashAutomation Framework to

Analyze the Performance of an Android Application”, Journal for Research, Volume 02, Issue 03,

May 2016, pp. 70-75.

[9]. SmartBear.com. (2016). The Basics of XCUITest and Using Xcode UI Test

Recorder.[online]Availableat: https://smartbear.com/blog/the-basics-of-xcuitest -and-using-xcode-ui-

test/

[10]. A. Alotaibi, A. and J. Qureshi, R. (2017). Novel Framework for Automation Testing of Mobile

Applications using Appium.International Journal of Modern Education and Computer

Science,9(2)pp.34–40. doi:https://doi.org/10.5815/ijmecs.2017.02.04.

https://doi.org/10.1109/iwast.2012.6228987

