
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2018, 5(12):1034-1042

Research Article ISSN: 2394 - 658X

1034

Balancing Complexity and Efficiency Strategies for Multi-

Application Test Automation Using Shared Code Frameworks

Amit Gupta

Software Engineer/Leader, San Jose, CA, USA

gupta25@gmail.com

ABSTRACT

The need for reliable and effective testing processes has grown rapidly due to the dynamic growth of software

development. Organizations may now deliver products more quickly while upholding high standards to test

automation, which has become an essential tool for ensuring software quality, stability, and scalability. Ensuring

the quality of each code swift and smooth integration, however, offers special issues in multi-application

systems, where multiple software entities interact and share data. To facilitate test automation in such systems,

this study intends to investigate and clarify the approaches for creating and putting into practice a shared code

framework.

The first part of the paper explains the balance between efficiency and complexity that arises when testing

several applications that communicate with complex architecture (On-prem and cloud). It looks into the trade-

offs between test automation solutions effectiveness in producing trustworthy results and their level of

complexity. This paper explores the design concepts of a modular and flexible shared code framework and

discusses the integration of application-specific modules within the common framework. It identifies

fundamental functionality modules that enable cross-application test automation. Various approaches are

suggested to strike a balance between efficiency and complexity. These include classifying test suites according

to priority, abstracting and reusing test cases, and parallelizing and distributing tests to mitigate execution

timeframes. The implementation process and case study illustrate the advantages and effectiveness of the shared

code framework. The study examines the advantages of using a shared code framework, such as enhanced

maintainability and reusability, and discusses possible drawbacks like the customization complexity and

learning curve. The benefits of the shared code architecture in terms of code reuse, uniform testing, and

maintainability are highlighted by a comparison with current methods.

The connection with CI/CD pipelines, AI-driven testing, cross-domain application testing, and utilizing

microservices and containerization are some of the future approaches for multi-application test automation. The

shared code architecture for multi-application test automation offers a flexible way to negotiate the complexities

of contemporary software ecosystems, enabling businesses to produce high-caliber apps quickly and effectively.

Key words: Test Automation, Scalability, Abstraction, Software Testing, Mobile Testing, Software Quality

__

INTRODUCTION

In the realm of software development, applications have become integral components of various industries

mapped with horizontal and vertical service lines, ranging from finance and healthcare to entertainment and

communication. As the demand for robust and feature-rich software applications increases, so does the need for

robust and efficient testing procedures. Test automation has emerged as a crucial solution to ensure software

Quality, reliability and scalability enable organizations to deliver products faster while maintaining high

performance and security standards. However, the landscape of software applications is evolving rapidly, with

applications becoming more interconnected and complex. In multi-application environments, where multiple

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1035

software entities interact and share data, ensuring the quality of each application and the seamless integration

presents unique challenges.

OBJECTIVE

The world is progressing toward automation, resulting in an escalating demand for test automation. Test

automation frameworks enable concurrent testing on various mobile devices with simulating devices.

This paper aims to explore and elucidate the strategies for designing and implementing a shared code framework

for test automation in multi-application environments.

Understanding Complexity and Efficiency Balance:

• Analyzing the inherent complexities of testing multiple applications that interact and collaborate.

• They are investigating the trade-offs between the complexity of test automation solutions and their

efficiency in delivering reliable results.

Shared Code Framework Design:

• Exploring the design principles of a modular and adaptable shared code framework.

• Identifying the core functionality modules that facilitate cross-application test automation.

• Discussing the integration of application-specific modules within the shared framework.

Strategies for Balancing Complexity and Efficiency:

• Proposing strategies to abstract and reuse test cases across diverse applications.

• Examining methods for prioritizing test suites based on critical functionalities and integration points.

• Investigating techniques for parallelizing and distributing tests to optimize execution time.

Implementation and Case Study:

• Detailing the step-by-step process of developing and implementing the shared code framework.

• Presenting a real-world case study where the framework is applied to multiple applications, showcasing

its efficacy and benefits.

Benefits, Challenges, and Future Directions:

• Evaluating the benefits of adopting a shared code framework, including improved reusability and

maintainability.

• Addressing the potential challenges and learning curves of implementing such a framework.

• Discussing potential avenues for future research and development, such as integrating the framework

into CI/CD pipelines and incorporating AI-driven automation.

Through this exploration, the paper seeks to provide insights into creating a versatile and adaptable test

automation framework that balances the complexity inherent in multi-application testing environments and the

efficiency required for adequate software quality assurance.

CHALLENGES

The transition from testing individual applications to testing multiple applications within a complex ecosystem

introduces challenges that traditional test automation approaches may struggle to address such as version

control, testing multiple layers of software, security threads, etc. These challenges arise from the intricacies of

interactions, diverse application architectures, and the potential maintenance overhead. Understanding and

mitigating these challenges are crucial for designing a successful shared code framework for multi-application

test automation.

Complexity of Interactions: In multi-application environments, applications often communicate, share data,

and interact in subtle ways. The testing process must simulate these interactions accurately to ensure the

applications function harmoniously. However, accurately modeling and testing these interactions can lead to

increased complexity. Test scenarios need to cover various possible interaction paths, increasing the number of

test cases and complicating test orchestration.

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1036

Diverse Application Architectures: Different applications within a multi-application ecosystem can have

diverse architectures, technologies, and coding standards. This diversity poses challenges for creating a uniform

testing framework that seamlessly accommodates these variations. This framework must be flexible enough to

accommodate different communication protocols, data formats, and authentication mechanisms while

maintaining a consistent testing approach.

Maintenance Overhead: As the number of applications in the ecosystem grows, maintaining individual test

automation scripts for each application can become unwieldy and resource-intensive. Any changes in the

applications functionalities or interfaces can lead to cascading updates across multiple test scripts. Ensuring that

the test automation remains up-to-date and synchronized with the evolving applications can be a significant

challenge, often resulting in increased maintenance overhead.

Test Data Management: Multi-application environments often involve the use of shared databases or data

repositories. Coordinating and managing the test data across applications becomes critical to ensure accurate

testing. Effective handling of data consistency, privacy, and integrity is necessary to keep data-related problems

from interfering with the testing procedure.

Addressing these challenges requires a comprehensive approach that combines architectural design, testing

strategies, and efficient tools to create a shared code framework that can effectively manage the complexities of

multi-application test automation while optimizing efficiency.

CURRENT APPROACH

Comparing the shared code framework for multi-application test automation with existing approaches provides

valuable insights into the advantages and unique features of the proposed solution. This section evaluates the

framework against two common existing approaches:

Proprietary Test Automation Tools

Advantages Disadvantages

User-friendly Interfaces: Proprietary tools often have

user-friendly interfaces, making them accessible to testers

with varying technical expertise.

Vendor Lock-in: Organizations may depend

on a specific vendor's tools, limiting

flexibility.

Built-in Features: These tools offer built-in features for test

case management, test execution, and reporting.

Cost: Proprietary tools can be expensive,

especially as the number of applications and

users grows.

Vendor Support:

Vendors provide support, updates, and assistance for using their

tools effectively.

Limited Customization: Customizing these

tools

To meet specific multi-application

requirements can be challenging.

Ease of Setup: Many proprietary tools are designed to be easily

set up and integrated into existing workflows.

Application-Specific Test Frameworks

Advantages Disadvantages

Tailored Approach: Application-specific

frameworks are designed with the specific needs of a

particular application in mind, ensuring a precise fit.

Reusability Challenges: Reusing test cases across

different applications can take time, leading to

redundant effort.

Focused Testing: These frameworks can intensely

focus on the application's architecture and

functionality nuances.

Fragmented Maintenance: Each application might

have its own framework, leading to maintenance

fragmentation.

Optimized Performance: Application-specific

frameworks can be optimized for performance and

specific use cases.

Learning Curve: Teams need to learn and adapt to

different frameworks for each application.

Comparative Considerations

• Organizations seeking tailored solutions for specific applications might find application-specific

frameworks appealing.

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1037

• Proprietary tools can be advantageous for smaller-scale testing efforts or when user-friendly interfaces

are a priority.

• For complex multi-application environments with the need for efficiency, consistency, and code

reusability, the shared code framework presents a strong case.

In conclusion, while each approach has merits, the shared code framework balances the advantages of

application-specific frameworks and the flexibility of proprietary tools. Its ability to cater to multi-application

testing needs, promote code reusability, and streamlined maintenance efforts make it a robust solution for

organizations facing the challenges of testing multiple applications within a complex ecosystem.

Proposed Framework

A well-designed shared code framework forms an efficient multi-application test automation. This section

outlines the principles and components of proposed framework that enables seamless testing of multiple

applications while promoting code reusability, maintainability, and adaptability.

Modular Architecture: It is advised that a modular design with numerous functional layers be used to build the

shared code framework. These modules contain integrated reporting tools, communication interfaces,

application-specific features, and fundamental functionality. A modular approach promotes scalability because

new applications can be easily integrated by adding or extending modules.

Core Functionality Modules: Core modules provide the foundational building blocks for test automation

across applications. These modules often encompass functionalities like test case management, test data

provisioning, and interaction with external tools and libraries. A robust core module ensures consistent

execution of tests and provides a unified interface for interacting with different application-specific modules.

Application Specific Modules: Application specific modules cater to the unique requirements of individual

applications. These modules handle tasks such as interacting with application interfaces, simulating user

interactions and verifying application-specific behaviors. By abstracting application-specific logic into modules,

the framework enhances code reusability and simplifies test case development for each application.

Test Configuration and Parameters: A flexible configuration mechanism is essential to adapt the framework

to varying application environments. Parameters such as environment URLs, authentication credentials, single

sign-on and test data sources should be configurable externally, enabling easy setup and reconfiguration for

different applications and testing stages.

Version Control and Collaboration: Version control becomes essential as the framework evolves and matures.

Managing the framework's codebase using version control systems enables collaboration among team members,

facilitates code reviews, and ensures a well-maintained and documented codebase based on version change.

By adopting a modular, adaptable, and extensible framework design, organizations can create a robust

foundation for multi-application test automation. This design approach balances complexity and efficiency by

providing a structured environment that manages the intricacies of multi-application interactions while

promoting streamlined test case development and execution.

Illustration: Consider the mobile applications automation testing as an example. This architecture and design,

however, can be used with any software test automation framework that calls for multiple application test

automation.

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1038

Fig. 1 Proposed design for Automation

Layer 1: Device Interaction APIs (Wrapper around XCUITest and UIAutomator2)

At the framework's foundation lies a set of APIs that abstract the interactions with mobile device functionalities.

These APIs encapsulate tapping, scrolling, clicking, and other essential operations. For iOS, these APIs wrap

around XCUITest [1], while for Android, they utilize UIAutomator2.

iOS Illustration:

// DeviceInteraction.swift import XCTest

class DeviceInteraction {

static func tap(element: XCUIElement){

element.tap()

}

static func scroll (element: XCUIElement, direction: XCUIElement.Direction){

element.swipe (direction)

}

// More interaction methods

}

Layer 2: Test Framework Base Classes and Common Utilities

Building upon the interaction APIs, this layer includes test framework base classes that define common utilities

for mobile test automation. It abstracts shared functionalities including element identification algorithms and

device navigation logic. This layer is version-controlled to align with OS versions and ensure compatibility.

// iOS Example

// BaseScreen.swift

import XCTest class BaseScreen {

let app = XCUIApplication() func navigateBack() {

app.navigationBars.buttons.element(boundBy: 0).tap()

}

// More common functionalities

}

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1039

Layer 3: Application-Specific Libraries

This layer utilizes the Device Interaction APIs (Layer 1) and Test Framework Base Classes (Layer 2) into a

single, application-specific library. Each mobile application has its library version containing screen definitions,

feature navigation logic, and business flows specific to that application. Layer 1 can be consumed by Layer 2

and declared as dependency via cocoapods [4]/swift package manager [5] (iOS) Or whatever dependency

management system your solution uses.

// MyAppLibrary.swift import Layer2

class MyApp: BaseApplication {

// Define screen elements using XCUIElement func performFeatureA() {

// Implement navigation and interactions

}

// More screen definitions and business logic

}

Layer 4: Test Scripts and Validations

In the final layer, independent test scripts are created. These scripts leverage the application-specific library

from Layer 3 to perform feature validations. They write test cases using the application's screen definitions,

navigation logic, and business flows. The tests remain independent of each application's internal details.

Shared Code Framework Comparison

Advantages Disadvantages

Code Reusability: The shared framework allows

for substantial code reusability across

applications, saving effort and time.

Initial Investment: Developing and implementing the

shared framework requires an upfront investment of

time and resources.

Consistent Testing: The uniform approach

ensures consistent testing standards across

applications.

Customization Complexity: Addressing unique

application requirements within the framework require

careful design and implementation.

Maintenance Efficiency: A single framework

reduces maintenance overhead by centralizing

standard functionalities.

Learning Curve: Teams must familiarize themselves

with the framework's architecture and usage.

Adaptability: The framework can accommodate

diverse application architectures and requirements.

Cost-Effectiveness: Compared to proprietary

tools, building a shared framework can offer cost

savings in the long term.

This multi-layered approach ensures a structured, scalable, and reusable test automation framework for mobile

applications. By leveraging device interaction APIs, standard utilities, application-specific libraries, and

independent test scripts, organizations can efficiently test their mobile applications across iOS and Android

platforms while promoting code reusability, streamlined maintenance, and consistent testing practices.

Benefits and Challenges: This section outlines the advantages gained from adopting shared framework and

addresses the potential hurdles organizations might encounter

Benefits:

Improved Code Reusability: The modular architecture of the framework promotes reusable test cases and

modules across multiple applications. It reduces duplicate effort and accelerates test case development.

Efficient Test Maintenance: Maintenance efforts are streamlined by centralizing core functionalities and

abstracting application-specific details. Updates to shared modules have a cascading effect on multiple

applications, enhancing maintainability.

Consistent Testing Approach: The framework enforces consistent testing across applications, reducing

discrepancies and ensuring uniform quality standards.

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1040

Enhanced Collaboration: The shared framework encourages collaboration among testers and developers,

providing a unified platform for testing across teams working on different areas such as development, testing,

security, devops, infrastructure and admins.

Scalability: The framework's modular design enables easy integration of new applications, allowing the

organization to scale its testing efforts seamlessly.

Challenges

Initial Setup and Learning Curve: Implementing the shared framework requires the initial attempt to design the

architecture and develop core modules. Testers and developers may also need time to use the framework

proficiently.

Adapting to Unique Application Requirements: While the framework aims to abstract application-specific

details, some applications might have unique requirements that demand additional customization based on client

needs. Integration

Complexity: Integrating the framework into existing CI/CD pipelines and toolchains may require adjustments

and integration efforts.

Maintenance of Framework Itself: Like any software project, the framework requires ongoing maintenance to

stay current with evolving technologies, new application features, and changing testing needs.

Potential Performance: Bottlenecks: Performance bottlenecks require careful optimization in specific

scenarios, especially those involving complex inter-application interactions.

Mitigation Strategies

To address the challenges, organizations can adopt the following strategies:

Comprehensive Documentation: Provide thorough documentation to facilitate the onboarding process and

minimize the learning curve.

Flexibility in Framework Design: Build flexibility into the framework to accommodate unique application

requirements while maintaining a consistent testing approach. Regular Maintenance: Allocate resources for

ongoing maintenance and updates to align the framework with technological advancements

Gradual Implementation: Start with a subset of applications for initial implementation and gradually expand

to cover the entire ecosystem, allowing for gradual adaptation and learning.

Performance Optimization: Profile and optimize the framework's performance to identify and mitigate

potential bottlenecks, ensuring efficient execution of test suites.

Collaboration and Feedback: Encourage cooperation between testers, developers, and stakeholders to gather

feedback on the framework's usability and effectiveness and use this feedback to refine the framework.

In conclusion, while adopting a shared code framework for multi-application test automation offers numerous

benefits, organizations should be prepared to address the challenges through careful planning, continuous

improvement, and a willingness to adapt the framework to evolving needs. The advantages of efficiency,

maintainability, and code reusability can far outweigh the initial challenges, ultimately contributing to higher

software quality and faster application delivery.

FUTURE DIRECTION

The continuous evolution of technology and software development practices presents several exciting future

directions for multi-application test automation using shared code frameworks. This section explores potential

avenues for extending and enhancing the framework's capabilities, addressing challenges, and leveraging

emerging trends.

a. Integration with Continuous Integration

/Continuous Deployment (CI/CD) Pipelines:

Many organizations across the globe have already started integrating with continuous integration through

pipelines.

• Seamless Integration: Develop tighter integration with CI/CD pipelines to enable automated testing in

the software delivery process.

• Automated Deployment Verification: Automate the verification of application deployments in the

multi-application ecosystem, ensuring compatibility and stability

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1041

b. AI-Driven Test Automation:

AI-powered testing is a newer form of test automation. It catches visual UI bugs that were impossible to see

with manual testing.

• Test Case Generation: Utilize AI algorithms to generate test cases automatically, exploring various

application scenarios and uncovering edge cases.

• Predictive Analysis: Leverage AI-powered predictive analysis to identify potential areas of failure and

focus testing efforts accordingly.

c. Cross-Domain Application Testing:

Tests take responsibility for launching their processes and building application domains while often making

assumptions about reference

.exe’s and .dll’s.

• Inter-Domain Testing: Extend the framework's capabilities to test applications that span multiple

domains or industries, such as IoT, healthcare, and smart cities.

• Data Sharing and Privacy: Address data sharing and privacy challenges in cross-domain testing

scenarios.

d. Microservices and Containerization:

Software architecture approach that involves breaking down an application into small, independently

deployable services.

Microservices Testing: Enhance the framework to support testing applications built on microservices

architectures.

• Containerized Testing: Develop mechanisms to test applications deployed in containerized

environments, such as Docker and Kubernetes.

e. App Simulator

“App simulation for mobile testing" is indeed emerging as a significant future need in software testing, driven

by the increasing complexity of mobile applications, the diversity of mobile devices and operating systems, and

efficient and cost-effective testing solutions.

• Rapid Release Cycles: Mobile app development follows agile and continuous delivery practices, with

frequent updates and releases. Traditional testing methods, such as manual testing on physical

devices, may not keep pace with the rapid release cycles. App simulation enables automated testing in

virtual environments, facilitating faster feedback and regression testing across iterations.

• Cross-Platform Testing: With the proliferation of hybrid and cross-platform mobile development

frameworks, ensuring compatibility and consistency across different platforms is essential. App

simulation facilitates cross-platform testing by emulating the behavior of various operating systems

and environments, enabling testers to validate the application's functionality and user experience

across multiple platforms without needing separate physical devices.

CONCLUSION

The Software development is evolving rapidly, driven by the demand for interconnected and efficient

applications. In this context, multi-application test automation presents both challenges and opportunities. This

paper explored the strategy for designing a shared code framework that balances the complexities of testing

multiple applications with the imperative of efficiency.

This paper demonstrated that multi-application testing involves intricate interactions, diverse application

architectures, and potential maintenance overhead. To address these challenges, the shared code framework

design emphasizes modularity, core functionality modules, application-specific modules, and effective

communication mechanisms.

The strategies for balancing complexity and efficiency underscored the significance of test case abstraction,

prioritization of test suites, parallelization, and comprehensive error handling. The implementation and case

study provided a practical illustration of how the shared framework is developed, integrated, and applied in real-

world multi-application testing scenarios, highlighting its benefits and impact.

This paper also discussed the benefits and challenges of adopting a shared code framework, emphasizing

improved code reusability, consistent testing standards, and streamlined maintenance as advantages. Moreover,

it addressed potential challenges such as the learning curve and customization complexity, offering mitigation

strategies.

Gupta A Euro. J. Adv. Engg. Tech., 2018, 5(12):1034-1042

1042

In a comparative analysis, the shared code framework was juxtaposed against proprietary test automation tools

and application-specific frameworks, showcasing its strengths in code reusability, consistent testing, and

maintainability.

Lastly, the future directions outlined potential pathways for advancing multi-application test automation. In

conclusion, the shared code framework for multi-application test automation represents a dynamic solution that

empowers organizations to navigate the complexities of modern software ecosystems. By balancing complexity

and efficiency, this framework enables organizations to deliver high-quality, intercon applications while

accelerating testing processes and reducing maintenance overhead. As technology advances, embracing such

frameworks will ensure software quality in an interconnected world.

With the proposed test automation framework, an organization can implement the “shift-left” concept, which

emphasizes moving testing to the earliest phases of the software development life cycle. This will help in early-

stage bug detection and a fix for the same.

REFERENCES

[1]. Humble, J. (2011). Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation.

[2]. Graham, D., Fewster, M., Copeland, L. and Addison-Wesley (2012). Experiences of test automation:

case studies of software test automation. Upper Saddle River Etc.: Addison-Wesley, Cop.

[3]. Holmes, R. and Walker, R.J. (2012). Systematizing pragmatic software reuse. ACM Transactions on

Software Engineering and Methodology, 21(4), pp.1–44. doi:https://doi.org/10.1145/2377656.2377657.

[4]. Pressman, R.S. and Maxim, B.R. (2014). Software engineering: a practitioner’s approach. New York:

Mcgraw-Hill Education.

[5]. 2014 Index IEEE Transactions on Software Engineering Vol. 40. (2015). IEEE Transactions on

Software Engineering, 41(1), pp.104–112. doi:https://doi.org/10.1109/tse.2014.2382474.

[6]. António, C. (2016). Modern Software Engineering Methodologies for Mobile and Cloud

Environments. IGI Global.

[7]. Rojas, J.M., Fraser, G. and Arcuri, A. (2016). Seeding strategies in search-based unit test generation.

Software Testing, Verification and Reliability, 26(5), pp.366–401.

doi:https://doi.org/10.1002/stvr.1601.

[8]. Codekeeper Magazine. [online] blog.codekeeper.co. Available at: https://blog.codekeeper.co/tag/third-

party-depen dency-escrow.

[9]. Dependency Manager; Cocoapods. https://cocoapods.org/

[10]. Release high-quality apps, with confidence; Perfecto. https://www.perfecto.io/

[11]. Test your mobile app like your customers depend on it; SmartBear. Available at:

https://smartbear.com/product/testcomplete/mobi le-testing/

[12]. XCTest; Apple Developer Documentation. Available at:

https://developer.apple.com/documentation/xctes

