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ABSTRACT 

We introduce a cubic rank transmuted Gompertz-Makeham distribution that extends the standard Gompertz-Makeham 

model by incorporating two more parameters into its distribution functions. We study the main statistical properties of 

the cubic transmuted model, including its hazard rate function, moment-generating function, moments, characteristic 

function, quantile function, entropy, order statistics, and moments of order statistics. 
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1. INTRODUCTION 

In 1860, Makeham [1] introduced the Gompertz-Makeham probability distribution as an extension of the Gompertz 

probability distribution that was introduced by Gompertz [2] in 1825. The Gompertz-Makeham distribution is a 

continuous probability distribution that has widely been used in survival analysis and modeling human mortality. It has 

been recently used together with its extensions in many fields of sciences. See Marshall and Olkin [3] for a 

comprehensive review of the history and theory of the Gompertz-Makeham probability distribution. Gompertz [5] 

emphasizes the practical importance of this probability distribution. Detailed information about the Gompertz-Makeham 

distribution, its mathematical and statistical properties, and its applications can be found in Johnson et al. [5] and [6]. 

A random variable X  is said to have a Gompertz-Makeham distribution with strictly positive real parameters  ,  

and  , abbreviated as ),,( GMX : , if its cumulative distribution function (cdf) is given by 

    0.>,1)/(exp1=),,;( xexxF x

GM    (1.1) 

The corresponding probability density function (pdf) is given as 

    0.>,1)/(exp)(=),,;( xxeexf xx

GM     (1.2) 

Given a baseline distribution with cdf )(xG , the transmutation map of cubic rank (CT) distribution has a cdf given by 

 ),)]([1)]()[1()](1([11=)( 2

2211 xGxGxGxF    (1.3) 

where 10 1    and 121 1   . 

The corresponding pdf is given by 

 ),)(3)](4[1)](2[1)](1()[1(=)( 2

221 xGxGxGxGxgxf    (1.4) 

 where )(xg  is the pdf of the baseline distribution. 

Recently, many authors have extend the GM model by transmutation. In 2017, khan et al. [7] introduced the four 

parameter transmuted generalized Gompertz distribution with a cdf and pdf given respectively by 

 },1)}]({exp[1{11)}]({exp[1=),,;( 









  xx eexF  

 11)}]({exp1)}[1({exp=),,;(  








 xxx eeexf  

 },1)}]({exp[1{1 




  xe  

where 10,>,,   and 0>x . 
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Abdul-Moniem and Seham [8] introduced the transmuted Gompertz (TGD) distribution and studied its statistical 

properties. The cumulative density function (cdf) of (TGD) distribution is 

 ],][1[1=),;( 1)(1)(  
xexe

TGD eexF
   (1.5) 

where 0x , 0>0,>   and 1||  . 

The corresponding probability density function (pdf) of (TGD) distribution is 

 ].2[1=),;( 1)(1)(  
xexex

TGD eeexf
   

El-Bar [9] introduced an extended Gompertz-Makeham model and studied its properties. It is in fact a transmuted 

Gompertz-Makeham (TGM) distribution that has a cdf 

 },}{1{1=),,;( ))(1/())(1/( x
x

ex
x

e

TGM eexF 





     (1.6) 

where 0,>0,>0,>   and 1||  . 

The corresponding probability density function pdf is given by 

 0.>  },2{1)(=),,;( ))(1/())(1/( xeeexf x
x

ex
x

ex

TGM







     

 Riffi [10] generalized the TGM distribution to a generalized model of the transmuted Gompertz-Makeham distributions 

(GTGM) by adding two more parameters to its distribution functions, and studied some of the properties of GTGM 

distribution. The cdf of the GTGM distribution is given by 

 },{11=);( )(1)/()(1)/( x
x

ex
x

e

X eexF      

where   is the vector 0,>0,>0,>0,>1, ),,,,,,(    and 1||  . 

The corresponding probability density function pdf, for 0>x  is 

 }.)()(1{)(=);( )(1)/(])[(1)/( x
x

ex
x

ex

X eeexf      

 In this paper, we will introduce the cubic rank transmuted Gompertz-Makeham (CTGM) distribution by substituting 

)(xG  in eq.n(1.3) to get the cdf of (CTGM) distribution 

 ],][1[1=);(
2)(1

2

2

)(1

1

)(1 x
x

ex
x

ex
x

e

eeexF



















  (1.7) 

 where   is the vector ),,,,( 21  , 0>0,>0,>  , 10 1    and 

121 1   , 

and the corresponding pdf  

 ].3)2([1)(=);(
2)(1

2

2

)(1

211

)(1 x
x

ex
x

ex
x

e
x eeeexf

















 


  (1.8) 

         

Plot of the CTGM pdf (left) and corresponding cdf (right) for a variety of values of its parameters.  
 

2. SUB-MODELS AND POSSIBLE EXTENSION 

1.  If we let 0== 21   in (1.7), then we get the standard (GM) distribution with parameters  ,,  . 

2.  If we let 0==2   and 



 =  in (1.7), then we get the (TGD) distribution described in (1.5). 

3.  If we let 0=2  in (1.7), then we get the (TGM) distribution described in (1.6).  

From the higher rank transmuted (HRT-G) family of distributions which proposed by Riffi [11], we can generalize the 

cubic rank transmuted Gompertz-Makeham (CTGM) distribution to the generalized cubic rank transmuted Gompertz-

Makeham (GCTGM) distribution with cdf 

 })]([1)]()[1({1)]([11=)( 3
2

2
211

1


 xGxGxGxF   (2.1) 

where 0, 1, 321   , and 121 1   . 

It is possible to extend the model by exponentiated the GM distribution that we use as a baseline; i.e., we replace )(xG  

by 
axG )(  in (2.1), where 0>a . That is, the cdf of the extended model will be 

 }.])([1])()[1({1])([11=)( 3
2

2
211

1


 aaa

E xGxGxGxF   (2.2) 
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3. GTGM AS MIXTURE OF DISTRIBUTION 

From (1.8) we cane write the pdf of CTGM distribution as  

 
x

x
e

x

X eexf










)(1

1 ))((1=);(  

 
x

x
e

x ee







2)(1

2

21 )2)(2(


  

 .)3(3
3)(1

3

2

x
x

e
x ee










  

Hence the CTGM distribution is a mixture of three GM distributions with weights ( 11  ), ( 21   ) and 2  as in the 

described in the following equation  

 ),;();()();()(1=);( 3222111  xfxfxfxfX   

where the functions );(1 xf , );(2 xf  and );(3 xf  are given by 

 1,2,3.=   ,)(=);(
)(1

iforeeiixf
xi

x
e

i

x

i











  

Here, );( xfi  is the pdf of a GM random variable with parameters  iandi    ,  for 1,2,3=i . 

 

4.  HAZARD RATE FUNCTION 

The survivor function of the cdf )(xF  of distribution is defined by )(1=)( xFxS  . 

For the cubic rank transmuted Gompertz-Makeham probability distribution, the survivor function is given as, 

 ].][1[11=)(
2)(1

2

2

)(1

1

)(1 x
x

ex
x

ex
x

e

eeexS



















  

The hazard rate function can be written as the ratio between the pdf )(xf  and the survivor function 

)(1=)( xFxS  . That is, 

 ,
)(

)(
=)(

xS

xf
xh  

then we can fined the hazard rate function of CTGM distribution by (1.7) and (1.8): 

 =)(xh  

 .
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Plot of the CTGM hazard function for a variety of values of its parameters. 

 

5. MOMENTS AND MOMENT-GENERATING FUNCTION 

The moment-generating function (mgf) of the CTGM distribution can be calculated using the transformation of 

variables technique. The result will be given in terms of the generalized integro-exponential function which is defined 

by 

 0.>,)(log
1)(

1
=)(

1
)( zdueuu

r
zE zusrr

s





 (5.1) 

Below, we are going to use the following identity from [?] 

       0.> ,1)(= 1)()(

1

)( zzzEzEszE r

s

r

s

r

s 

   (5.2) 

Theorem 5.1 Let )(: CTGMX . Then the moment-generating function (mgf) of X , is given by  
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tt EeEe  


  (5.3) 

 Proof.  

 (1.8)     ,);(=)(=)( bythendxxfeeEtM txtX
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Then, in terms of the generalized integro-exponential function, )()( zE r

s , the mgf of X  can be written as 
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corollary 5.1 The k th partial derivative )(tM X  with respect to t  is  
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t EeEe    (5.4) 

Proof. Using the equation  

 0,1.=   1,2,3,=   ),(!=)(
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 (5.5) 

  

Theorem 5.2  Let )(: CTGMX . Then, the k th moment of X  is given by  

 )
2

()()(){(1!=][ 1

1)
2

(

2

21

1

1)(
1

































  kkkk EeEekXE  

 )}.
3

(1

1)
3

(

2
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 kEe  (5.6) 

Proof. It is clear that the k th moment is equal to the 
thk  derivative of )(tM X  evaluated at 0=t  so, to calculate the 

thk  moment of X  we replace 0=t  in (5.4). And using (5.2) for simplifying.  

 

6. CHARACTERISTIC FUNCTION 

The characteristic function of the random variable X  is (Allan [12]) defined as  

 .1=      ),(=)(E=)( 



ixdFeet X

itxitX

X  (6.1) 

In this theorem, we will compute the characteristic function of the cubic rank transmuted Gompertz-Makeham 

probability distribution. 
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Theorem 6.1 Let )(: CTGMX . Then the characteristic function of X , is  
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  (6.2) 

 

7. QUANTILE FUNCTION 

Theorem 7.1 Let )(: CTGMX . Then the quantile function of X , is given by  

 ),),,((
1

)],,(log[
1

= 2121





















 qBepqBxq  

where )(zp  is the principle solution for w  in 
wwez =  (or the Lambert W-function).  

 Proof. To compute the quantile function of the CTGM distribution, we replace about x  by qx  and about 

)(xF  by q  in (1.7) to get the equation 

 ].][1[1=
2)(1
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)(1

1

)(1
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  (7.1) 

Now we solve the equation (7.1) for qx . So, let 
q

x
q

x
e

ey







 )(1

= . Then, (7.1) becomes  

 0,=23 dcybyay   

where 2= a , )(= 21  b , )(1= 1c  and 1)(= qd . 

Let the function ),,( 21 qB  be defined by 

 ,
)3(2
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where ,2792= ,3= 23

2

2

1 daabcbacb    and qd 1= . 

Hence, 

 

 ).,,(= 21

)(1










qBe
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x
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x
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 (7.2) 

 

Therefor, the solution of (7.2) is 

 ),),,((
1

)],,(log[
1

= 2121





















 qBepqBxq  

where )(zp  is the principle solution for w  in 
wwez =  (or the Lambert W-function).  

 

8. ORDER STATISTICS 

Let nXX ,,1   be a random sample of size n  from the CTGM distribution with parameters 0>0,>0,>  , 

10 1    and 121 1   . Let nnnn XXX ::2:1 ,,,   be the corresponding order statistics obtained by arranging 

niX i ,1,=,  , in non-decreasing order of magnitude. The i th element of this sequence, niX : , is called the i th 

order statistic. 

From (Casella and Berger [13], Page 232), the pdf of the i th order statistics is obtain by  

 .)]([1)]()[(=)( 1

:

ini

ni
X xFxFxf

i

n
ixf  








 (8.1) 
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proposition 8.1 Let niX :  be the i th order statistic from )(: CTGMX  with 01   and 02  . Then, the pdf of 

the i th order statistic is given by  
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  (8.2) 

Proof.  

 (8.1)   )]([1)]()[(=)( 1

:
fromxFxFxf

i

n
ixf ini

ni
X

 







 

 theorembinomialbyxF
j

in
xFxf

i

n
i jj

in

j

i      ],)]([1)([)]()[(=
0=

1








 













 

 ).(8.11.71.8(8.11.7),     ,)]()[(1)(= 1

0=

usethenxFxf
j

in

i

n
i jij

in

j











 








  

 

Theorem 8.1 Let niX :  be the i th order statistic from )(: CTGMX  with 01   and 02  . Then the moment-

generating of niX :  is  
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 where  << t .  
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 Then we using (5.1) to get the result.  

 

corollary 8.1 Let niX :  be the i th order statistic from )(: CTGMX  with 01   and 02  . Then the k th 

derivative of the moment-generating of niX :  with respect to t  is  
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where  << t  and  
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Proof. The proof as proof of Corollary (6.1).  

 

Theorem 8.2 Let niX :  be the i th order statistic from )(: CTGMX  with 01   and 02  . Then the k th 

moment of niX :  is given by  
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Proof. The proof as proof of Theorem (5.2).  

  

corollary 8.2 Let niX :  be the i th order statistic from )(: CTGMX  with 01   and 02  . Then the 

expectation of niX :  is  
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 Proof. Substitute about 1=k  in (8.5).  

 

9. ENTROPY 

9.1. Shannon Entropy 

The Shannons entropy ([14]) of a non-negative continuous random variable X  with pdf )(xf  is defined as  
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  (9.1) 

Below, we are going to use the Expansion of the Logarithm function (Taylor series at 1),  
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proposition 9.1 Let )(xf  be pdf of )(: CTGMX  with 11  , 02   and 21   . Then for a real number  ,  
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Proof. From (1.8), we have  
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 By the binomial series,  
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 Substitute (9.5) and (9.6) in (9.4) to get the result.  

 

Note: It is clear that when n=  natural number in (9.3),  
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Theorem 9.2 Let )(: CTGMX  with 11  , 02   and 21   . Then Shannons entropy of X  is given by  
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Proof. By the Expansion of the Logarithm function (9.2) 
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substituting (9.7) in (9.9) to get 
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then use (5.1) to get the result.  

9.2. Renyi entropy  

If X  is a non-negative continuous random variable with pdf )(xf , then the Renyi entropy of order   (See Renyi 

[15]) of X  is defined as  
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Theorem 9.2 Let )(: CTGMX  with 11  , 02   and 21   . Then the Renyi entropy of order   

of X  is given by  
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 Proof. To compute )( fH , we substitute (9.3) in (9.10).  
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9.3. q-Entropy 

The q-entropy was introduced by Havrda and Charvat [16]. It is the one parameter generalization of the Shannon 

entropy. Ullah [17] defined the q-entropy as  
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 where 0>q  and 1q . 

 

Theorem 9.3 Let )(: CTGMX  with 11  , 02   and 21   . Then q-entropy of X  is given by  
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Proof. To find )(qIH , we substitute (9.3) in (9.11).  
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