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ABSTRACT

We introduce a cubic rank transmuted Gompertz-Makeham distribution that extends the standard Gompertz-Makeham
model by incorporating two more parameters into its distribution functions. We study the main statistical properties of
the cubic transmuted model, including its hazard rate function, moment-generating function, moments, characteristic
function, quantile function, entropy, order statistics, and moments of order statistics.

Key words: Gompertz-Makeham distribution, mixture of distribution, entropy, order statistics, moments of order
statistics

1. INTRODUCTION

In 1860, Makeham [1] introduced the Gompertz-Makeham probability distribution as an extension of the Gompertz
probability distribution that was introduced by Gompertz [2] in 1825. The Gompertz-Makeham distribution is a
continuous probability distribution that has widely been used in survival analysis and modeling human mortality. It has
been recently used together with its extensions in many fields of sciences. See Marshall and Olkin [3] for a
comprehensive review of the history and theory of the Gompertz-Makeham probability distribution. Gompertz [5]
emphasizes the practical importance of this probability distribution. Detailed information about the Gompertz-Makeham
distribution, its mathematical and statistical properties, and its applications can be found in Johnson et al. [5] and [6].

A random variable X is said to have a Gompertz-Makeham distribution with strictly positive real parameters o,
and y, abbreviated as X : GM (&, 3, 7) , if its cumulative distribution function (cdf) is given by

Fou (G, B.7) =1-00 1 x—(@p)e” -1), x>0. (11)

The corresponding probability density function (pdf) is given as
fou (%, .7) = (7 + ce™) exp{(ed B)1-e”)- x|, x>0. 12)
Given a baseline distribution with cdf G(X), the transmutation map of cubic rank (CT) distribution has a cdf given by
F(x) =1-[1-G()I(1~ 4 + (4 — ) [1-G(X)]+ 4[1-G(X)I), (1.3)

where 0< A <land 4, —1<A4,<4,.
The corresponding pdf is given by

f () = g([L-G )L+ A[1-2G(X)]+ 4,[1-4G ()] +34,G(x)*), (14)
where g(X) is the pdf of the baseline distribution.

Recently, many authors have extend the GM model by transmutation. In 2017, khan et al. [7] introduced the four
parameter transmuted generalized Gompertz distribution with a cdf and pdf given respectively by

F(xa B.n)= [1—exp{—%(e"* —1)3P{1+ 4 —ztl—exp{—%(e"* ~1)3}
f (%, B,1) = affe™ exp{—% (e™ —1)}[1—e><p{—% (e -1)3}"*

{1+ A —A1—exp{—Z (™ —1)}"},
n
where &, ,7>0,A<1and x>0.
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Abdul-Moniem and Seham [8] introduced the transmuted Gompertz (TGD) distribution and studied its statistical
properties. The cumulative density function (cdf) of (TGD) distribution is

Frep (%@, 0) = [1—e 7" D][14 2e 7" D], (15)
where X>0, «>0,0>0and | A [<1.
The corresponding probability density function (pdf) of (TGD) distribution is
frop (X2, 0) = @™ e /" D[1- 1 +22e77" ],

El-Bar [9] introduced an extended Gompertz-Makeham model and studied its properties. It is in fact a transmuted
Gompertz-Makeham (TGM) distribution that has a cdf

Frow (G B,7) = {1-e @07 14 ety (1.6)
where « >0,>0,7>0, and | A |<1.
The corresponding probability density function pdf is given by
From (G0 B,7) = (7 +a€®)e @I 71 ) 1 230" x>0,

Riffi [10] generalized the TGM distribution to a generalized model of the transmuted Gompertz-Makeham distributions
(GTGM) by adding two more parameters to its distribution functions, and studied some of the properties of GTGM
distribution. The cdf of the GTGM distribution is given by

F, (X, Q) =1—e @iy 3 4 je(en)ae ey
where Q is the vector (&, f5,7,0,£,1),0>1,6>0,>0,8>0,y >0, and | A [<1.
The corresponding probability density function pdf, for X > 0 is
_ePXy_ _ePXy_
f (X;Q) = (y +0e™)e X5 (1 1)+ A(S5 + £)e Pt
In this paper, we will introduce the cubic rank transmuted Gompertz-Makeham (CTGM) distribution by substituting
G(X) ineq.n(1.3) to get the cdf of (CTGM) distribution

@ (1-e/) % (1-e/) - 29(1_e/)-20
F(x;0)=[1-¢” 1+ 4 e” +A,e’ 1, (1.7)
where ® is the vector (&, f,7,4,,4,), «>0,>0,7>0, 0< 4, <1 and

W-1<2, <2,
and the corresponding pdf

X Xy

221 M) o

) Z1-eM)-m
[1—ﬂl+2(21—12)eﬂ +34, e’ ]. (1.8)

Plot of the CTGM pdf (left) and corresponding cdf (right) for a variety of values of its parameters.

g(1—e
f(x;0)=(y+ae®)e’

2. SUB-MODELS AND POSSIBLE EXTENSION
1. Ifwelet 4, =4, =0 in(1.7), then we get the standard (GM) distribution with parameters &, 3,7 .

a
2. Ifwelet A, =y=0and 8= E in (1.7), then we get the (TGD) distribution described in (1.5).

3. Ifwelet 4, =0 in (1.7), then we get the (TGM) distribution described in (1.6).

From the higher rank transmuted (HRT-G) family of distributions which proposed by Riffi [11], we can generalize the
cubic rank transmuted Gompertz-Makeham (CTGM) distribution to the generalized cubic rank transmuted Gompertz-
Makeham (GCTGM) distribution with cdf

F(x) =1-[1-G)I"{1- 4 + (4 = A)[1-G(X)]? + 4,[1-G(x)] *} (2.1)
where o 21, 0,,0,20,and 4, 1<, < 4,.
It is possible to extend the model by exponentiated the GM distribution that we use as a baseline; i.e., we replace G(X)

by G(Xx)* in (2.1), where a > 0. That is, the cdf of the extended model will be

Fe (X) =1-[1-G(x)*T™{1- 4 + (4 - A)[1-G(x)°]? + 4,[1-G(x)*]*}. (2.2)
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3. GTGM AS MIXTURE OF DISTRIBUTION
From (1.8) we cane write the pdf of CTGM distribution as

2 a-eP)-p
fy (6Q) = (1-A)(r +a e™)e’
221 _e/¥)_ox
+(4—4,)2y+2a e’f”‘)e B
22 1-eP) -3

+2,(3y +3a ”)e ﬂ
Hence the CTGM distribution is a mixture of three GM distributions with weights (1—4,), (4, —4,) and 4, asin the
described in the following equation

f (x Q) = (1-4) () + (4 - 4,) f,(x; Q) + 4, f, (X, ),
where the functions f,(x;Q), f,(x;Q) and f,(X;€2) are given by
i( 1-eP)_inx

f.(x;Q)=(iy+iae®)e’ , fori=1,2,3.

Here, f.(X;Q) is the pdf of a GM random variable with parameters icr, fand iy for i =1,2,3.

4. HAZARD RATE FUNCTION
The survivor function of the cdf F(X) of distribution is defined by S(X) =1—F(X).
For the cubic rank transmuted Gompertz-Makeham probability distribution, the survivor function is given as,
L¢P Za-e)-m —(1 )2
S(x)=1-[1-¢” 11+, €e” +A4,e’
The hazard rate function can be written as the ratio between the pdf f (X) and the survivor function
S(X) =1-F(x). Thatis,

f(x
h(x) = —( ) ,
S(x)
then we can fined the hazard rate function of CTGM distribution by (1.7) and (1.8):
h(x) =
Za-eM)-p Za-e)-m 21_eM) 20
(y +a e™)e’ [1-4, +2(4, - 4,)e” +31,e”
2 e Za-eM)-p 22 o) 2
1-[1-€” ][1+ﬂ1 e’ +A,e’

Plot of the CTGM hazard function for a variety of values of its parameters.

5. MOMENTS AND MOMENT-GENERATING FUNCTION
The moment-generating function (mgf) of the CTGM distribution can be calculated using the transformation of
variables technique. The result will be given in terms of the generalized integro-exponential function which is defined

by
1 o
E (z)=———| log"(u)u~ e *du,z>0. (5.1)
5@ r(m)fl g'(u)
Below, we are going to use the following identity from [?]

E(rs_)l( z)=(s- 1)E(s)( z)+ ZE 1)( z),2>0. (5.2)
Theorem 5.1 Let X : CTGM(®). Then the moment-generating function (mgf) of X, is given by

B 1>ﬂ B /)’
37_/12 3/3 o o a(l- /11) ﬂEO a
wge ( %)+ 5o 2 ( ﬁ)
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200 -4) 5o 2ay Bak oo Sa
+ 5 e E(ZZ_I)(ﬁ)+ 5 e E(SZ_I)(,B)' (5.3)
Proof.

M, () = E(e¥) = j“;etx f(x:@) dx, then by (1.8)

o [ @-e™)-m

= [Te" (y+ae™K(1-A)e”
[—(1 e)-2x] 2a-e)-3]

+2(4,-A)e ”? +31,e” }dx.

Then, in terms of the generalized integro-exponential function, E(rs) (2) , the mgf of X can be written as

M= 24 g 2(h=%) 5 2a
(0= 1)(ﬂ) 5 l)(ﬂ>

W i go 32y, all=4) 5o
+ ,B € Sy—t 1)(ﬁ) ﬂ —t (,B)

LRaloh) gy (20, S0k o g (32
B EST BB &Y' g
corollary 5.1 The K th partial derivative M (t) with respect to tis

2a

M) = 569 iy (1— 1) e € LCr2p-rye’ By O
b'p et g

3a

+3ph e’ Ek3;/t (?)+a(1 ﬂl)eﬁ Ek; ([),)

3a

3
+2a(4 — ﬂz)e E‘}yt( *)+3ar,e” Ekgyt(—)}- (5.4)
;) P > p
Proof. Using the equation

0 (%=

atk (W—t ,B ' I;/—t (ﬂ) I = 112131 J = 011 (55)

Theorem 5.2 Let X : CTGM(®). Then, the K th moment of X is given by

X 1= K- A) e L )+ (=) ! %, j&o

2a
- 3o
B pk1 90
thel By COL 9

Proof. It is clear that the K th moment is equal to the k™ derivative of M « (t) evaluated at t =0 so, to calculate the

k™ momentof X we replace t =0 in (5.4). And using (5.2) for simplifying.

6. CHARACTERISTIC FUNCTION
The characteristic function of the random variable X is (Allan [12]) defined as
$ ) =EE)=[ ™ dr (), i=+-1 (6.1)

In this theorem, we will compute the characteristic function of the cubic rank transmuted Gompertz-Makeham
probability distribution.
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Theorem 6.1 Let X : CTGM(®). Then the characteristic function of X , is

¢X (t) }/(1ﬁ21) ﬂ (7 it 1)(ﬂ) 27(11_12) e 27/ it 1)(?)
+377”2e5 = Nk "‘(1/1) - e ()

205(/?1 /12) 2a 30522 g0 3_05. |
'B 2;/ it ('B) 'B (Syﬂ—lt)(ﬁ) (6 2)

7. QUANTILE FUNCTION
Theorem 7.1 Let X : CTGM(®). Then the quantile function of X , is given by

a B
X, = [~ Alog B(q, 4 A)1- = p(Le” B(g, 4 4) 7,
By By

where P(z) is the principle solution for W in z = we" (or the Lambert W-function).
Proof. To compute the quantile function of the CTGM distribution, we replace about X by Xq and about
F(X) by q in (1.7) to get the equation

a Ve X X
Za-e 9)- Za-e 9)- —(1 e q)—Zqu
q=[1-¢’ ][1+/1l e” +22 e’ ]. (7.1)
24 ) g
Now we solve the equation (7.1) for X, . So, let 'y = e’ . Then, (7.1) becomes

ay’ +by’ +cy+d =0,
where a=A4,, b=(4-4,),c=(1-4) and d =(q-1).
Let the function B(Q, 4, 4,) be defined by
28 (Gryas + 80"
B =0 ,
(0.4, 4) = 3a 3a(¢, +m)“3 3(2"%)a

where & =—-b”+3ac, &, = —2b° +9abc—27a’d, and d =1—q.
Hence,

2 eﬁxq) -7
e’ a

=B(q, 4, 4)- (7.2)

Therefor, the solution of (7.2) is
@ B
1 1 o -,
Xq =——[a—=pFlogB(q, 4, 4,)]-— p(—e” B(q,4,4,) 7),
By By
where p(z) is the principle solution for W in Z =we" (or the Lambert W-function).

8. ORDER STATISTICS
Let X,,--+, X, be a random sample of size N from the CTGM distribution with parameters &« >0, >0,y >0,

0<A <land 4 -1<A, <A . Let X, X,,, -, X, be the corresponding order statistics obtained by arranging

X;,1=1,---,n, in non-decreasing order of magnitude. The ith element of this sequence, X,,, is called the ith
order statistic.
From (Casella and Berger [13], Page 232), the pdf of the i th order statistics is obtain by

x.. (X)= l( jf COLF COT 21~ F OO1"" (8.1)
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proposition 8.1 Let X, be the i th order statistic from X : CTGM (®) with 4, #0 and A, # 0. Then, the pdf of
the 1 th order statistic is given by

B ey e e

(v—k) 1k W(lfeﬁx)f(s+v+k+l)yx]
X /12{7(1_21)9 +27(/11_/12)

[(5+V+k+2)0t [(s+v+k+3)a

(l—eﬂx )—(s+v+k+2)x] (1—eﬁx)—(s+v+k+3);o(]

xe +3y4, €

(R o) [(ssvekeyy—p1n
+a(l-A)e 7 +2a(4 - 1,)
[HVHKa2)a ) Xy s vk 2)y—BIX] (VK o) 15 ivak+3)y—p1x]
x e +3al, e }. (8.2)

Proof.

(x)—l( ]f(x)[F(x)]' 1-Fx)]"" from(8.1)
(jf(x)[F(x)]' 1[2( 1)1( J[F(x)]] by binomial theorem
_ ( —1)! ( J(n; jf(x)[F(x)]”“, then use (8.11.7),(8.11.71.8).

Theorem 8.1 Let X, be the i th order statistic from X : CTGM(®) with A, #0 and A, # 0. Then the moment-

generating of X, is

M) = ZZZ( NG ( j( , J(H i 1j(+ i 1}@

(s+v+k+l)a
- k)/12{7/(1 /11) 5 Eo ((s+v+k+1)a)

([(s+v+k+l)y t] ﬂ

B
(s+v+k+2)a

27/(21 Z?) 0 (s+v+k+2)a
ﬁ E([(s+v+kﬂ+2)7—t]+1) ( ﬂ )

(s+v+k+3)a

e /  EO ((s+v+k+3)a
ﬁ ([(s+v+kﬁ+3)y—t]+l) ﬁ

(s+v+k+l)a

y(l /11) 0 ((s+v+k+1)a)
ﬂ ([(s+v+l;+l)y—t]) ﬂ

(s+v+k+2)a

27/(21 ZQ) 7 £o ((s+v+k+2)a)
ﬁ ([(s+v+kﬁ+2)y t] ﬁ

(s+v+k+3)a

3L, 5 o (s+v+k+3)x
—¢€ s+v+k+3)y—t] (

E y
R B

)

+ e (8.3)

where —oo <t <oo,

Proof.

M(t) = E(e™) = f e™ f,.dx thenby(8.2),
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g Y e A

(v—k) 1k W(lfeﬁx)f(s+v+k+l)yx]
X /12{7(1_21)9 +27(/11_2”2)

[(s+v+k+3)a

>S5
Ll
T
|
IR
T
|
IR
<

[(5+V+k+2)0‘ (1—eﬁx)—(s+v+k+3)y)(]

(l—eﬂx)—(s+v+k+2);f»<]

xe +3y4, €
(Srvikel)a ) Xy ptsivrked)y—BIx]

+a(l-4)e p +20(A,—1,)

(L) [(s+v+k+2)7—B1X] (SRR ) B (s vak+3)y—BIX]

x e +3at,e 7/ Jax.

Then we using (5.1) to get the result.

[(s+v+k+2)a

corollary 8.1 Let X,, be the ith order statistic from X : CTGM(®) with 4, #0 and A, # 0. Then the K th

derivative of the moment-generating of X, with respectto t is
n-ii+j-li+j-1 v
MO®) =D > > cl,js,v,u)* KA1 %
j=0 s=0 v=0 u=0

(s+v+u+l)a

{7/(1 A) o K ((s+v+u+1)a)
ﬂ ([(s+v+lj;1)y—t]+l) ﬁ

(s+v+u+2)a

27/(21 ﬂq) £k ((s+v+u+2)a)
ﬁ ([(s+v+uﬂ+2)y t] 1) ﬂ

(s+v+u+3)a

K (s+v+u+3d)a
_j? € / Ek[(s+v+u+3)y—t] ( )
B o B

(s+v+u+1)a

a(l ﬂq) K (s+v+u+l)a
[(s+v+u+l)y—t] (—)
B ) B

(s+v+u+2)a

205(21 /12) 5 gk ((s+v+u+2)a)

ﬂ ([(s+v+uﬂ+2)y—t]) ﬁ

—+

(s+v+u+3)a
3a e S+V+Uu+3)a
3ok o s E"[ ( )

(s+v+u+3)y—t] ( ﬂ )} (8-4)

—+

where —oo <t < oo and

s (1)

Proof. The proof as proof of Corollary (6.1).

Theorem 8.2 Let X, be the ith order statistic from X :CTGM(®) with 4, #0 and A, #0. Then the Kth

moment of X, is given by
n—ii+j-li+j-1 v
E[Xi =200 D > cli j,s,v,u) B KA x
j=0 s=0 v=0 u=0
(1-4) (w;“l)a 1 (s+v+u+l)a
€ ((s+v+u+l)y 1 (—)

(s+v+u+1) ) Yii
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(S+v+u+2)a
N 2(4, - 4,) e 4 K1 ((s+v+u+2)a)
(S+V+U+2) L2y ) Y
i
L3 ew £t ((s+v+u+3)a)} 5
(s+V+u+3) (G B ' '

Proof. The proof as proof of Theorem (5.2).

corollary 8.2 Let X, be the ith order statistic from X :CTGM(®) with A4, #0 and A, #0. Then the
expectation of X, is

n—ii+j-li+j-1 v

SRR EDI NI (H j,Svu)ﬁ/ll‘"”)/l;x

j=0 s=0 v=0 u=0

(s+v+u+l)a
A4 e (+vrutlay
(s+v+u+1)
(s+v+u+1) (‘”Vﬂu+ L41) Yij
(S+v+u+2)a
N 2(4-4,) e F EO ((s+v+u+2)a)
(S+V+U+2) 2y ) i
s
L3 e(s+v+ﬁ“+3)“ o ((s +V+U+3)a o 6
P ) (s+v+u+3) :
(s+V+Uu+3) () Yij

Proof. Substitute about K =1 in (8.5).

9. ENTROPY
9.1. Shannon Entropy

The Shannons entropy ([14]) of a non-negative continuous random variable X with pdf f (X) is defined as

H(f)=E[-log f (X)]=~[ "f (x)log(f (x))dx. 9.1)
Below, we are going to use the Expansion of the Logarithm function (Taylor series at 1),
log(x) = Z( DT e 92)
m

proposition 9.1 Let f(X) be pdf of X .CTGM (@) with 4, #1, A, #0 and A, # A,. Then for a real number 6,

0= 33300 1k 0y @l A 2) (1) x

[W(Leﬁ‘)f[(msjfk)yfiﬁ]x]

e , (9.3)

where (i, j,k,0) = (?)(f}(;] 21k 31,

Proof. From (1.8), we have

92_eXy_gx 21Xy 20 oMy o
/) =(+ae®)e” [1 A +2(0, — ﬂq)eﬁ +31,e” Y. (04
By the binomial series,
© 0 o
(}/+C¥ eﬂk)& — Z( Jy@—lal elﬁX (9.5)
i=o\ I
and
)~ 2 a-eP)-2x
A-nr20 -1 va e ’
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Bizka o) (3j-k)]

‘ZZ{ j{ JZ' “BAA-1)T (4 -2) e 7 . (9.6)

j=0k=0
Substitute (9.5) and (9.6) in (9.4) to get the result.

Note: It is clear that when & = N natural number in (9.3),
n on j . . )
100 =2 > e, j ko ny™ @ B(-4)" (= 2) ™ x
i=0 j=0k=0

[Wa—eﬁ“)—[(n+31—k)y—iﬂ]x]

e , (9.7)

where ¢(i, j, k,n) = (ijw 21 31,

Theorem 9.2 Let X : CTGM(®) with A4, #1, 4, #0 and A, # A,. Then Shannons entropy of X is given by

o m n+ln+l j

H(f) ZZZZZC(I J k n, m) ]/n+1_ 0{ ﬂé(l ﬂl)n+l—1><

m:1n:0 i=0 j=0k=0

(n+1+SJ k)

=) e By, |, (5 (01431210, 09
B

where ¢(i, j, k,n, m) = (-1)“(?)%::@, i kon+1).

Proof. By the Expansion of the Logarithm function (9.2)

H(f)==["f()log(f ())dx= [ ZZ( 1)[ } f ™2 (x)dx, 9.9)

m=1n=0
substituting (9.7) in (9.9) to get

n+ln+l j o
H()= [ 33" ( ] S 33l jokon+1)y ™ @ 2
m=1n=0 i=0 j=0k=0
i ik W@-eﬂx )-[(n+1+3 k) y~iA1x]
x(1=A4)" (A4 -4) e dx,

then use (5.1) to get the result.

9.2. Renyi entropy
If X is a non-negative continuous random variable with pdf f (X), then the Renyi entropy of order & (See Renyi
[15]) of X is defined as

Hg(f)=$logf:f(x)9dx, vO>0 (0=1). (9.10)

Theorem 9.2 Let X : CTGM(®) with A, #1, A, # 0 and A, # A, . Then the Renyi entropy of order &
of X isgiven by

1 e d, P y
HH(f):m{_logﬁ_'_log ZZZC(',J,k,e)yH o /1%(1—/,11)9 !

- i=0 j=0k=0

o Z(o+3i-k) .
(=2 e By, (H(@+3] k)N

(T—Hl) ﬁ

Proof. To compute H,(f), we substitute (9.3) in (9.10).

1009



Riffi & Hamdan Euro. J. Adv. Engg. Tech., 2018, 5(12):1001-1010

9.3. g-Entropy

The g-entropy was introduced by Havrda and Charvat [16]. It is the one parameter generalization of the Shannon
entropy. Ullah [17] defined the g-entropy as

_ 1 [~ q
@)= [ 00, (9.11)

where ¢ >0 and q#1.

Theorem 9.3 Let X : CTGM(®) with A, #1, A, #0 and A, # A,. Then g-entropy of X is given by

1 1 &S, . L p
(@) =——{1-=2>">"> ¢, j.k,q)y"" o' 4(1-24)""
q-1" pixiwi
ik ORI g a -
x(4-4) " e E((q+3j—k)y_i+1)(z(q+3j_ N}
B
Proof. To find I, (), we substitute (9.3) in (9.11).
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