European Journal of Advances in Engineering and Technology, 2018, 5(10): 802-805

Solution of Second Order Initial- Boundary Value Problems of Partial Integro-Differential Equations by using a New Transform: Mahgoub Transform

Mohammad Almousa
Department of Mathematics, Faculty of Arts and Science, Amman Arab University, Amman, Jordan mohammadalmousa12@yahoo.com

Abstract

The partial integro-differential equations (PIDEs) have many possible applications in areas like mathematics, physics and engineering. Therefore, we develop a new transform, which was proposed by Mahgoub [1], for solving second order initial-boundary value problems (IBVPs) of PIDEs. This transform is characterized by its simplicity of use.

Key words: Integral transform, Mahgoub transform, Boundary value problems, Partial integro-differential equations.

INTRODUCTION

Let's look at the second order IBVP of PIDE as follows:
$u_{t t}(x, t)=u_{x}(x, t)+\lambda \int_{0}^{t} k(t-s) u(x, s) d s+g(x, t), \quad x \in \Omega, t \in J$
with initial (IC) and boundary (BC) conditions
$u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{t_{0}}(x), \quad x \in[a, b]$
$u(a, t)=h(t), \quad u(b, t)=l(t), \quad t \in[0, T]$,
where $u_{t t}(x, t)=\frac{\partial^{2} u}{\partial t^{2}}, u_{x}(x, t)=\frac{\partial u}{\partial x}, \lambda$ is constant, $g(x, t)$ is known function and $k(t-s)$ is given kernel function.
Several methods for solving PIDEs are given [2-9].
In this paper, we present application Mahgoub transform for solving second order IBVPs of PIDEs.

APPLICATION MAHGOUB TRANSFORM TO SECOND ORDER IBVPS OF PIDEs

Recently, a new transform was proposed by Mahgoub [1] in 2016. He define the function A for $t \geq 0$ as

$$
\begin{equation*}
A=\left\{f(t): \exists M, k_{1}, k_{2}>0,|f(t)|<M e^{\frac{|t|}{k_{j}}}\right\} \tag{2}
\end{equation*}
$$

where M, k_{1}, k_{2} are constants and M is a finite.
The operator $M\{f(t)\}$ is given as

$$
\begin{equation*}
M\{f(t)\}=H(v)=v \int_{0}^{\infty} f(t) e^{-v t} d t, k_{1} \leq v \leq k_{2} . \tag{3}
\end{equation*}
$$

FACT: (Linearity Property)

Let $f(t)$ and $g(t)$ are functions whose Mahgoub transform exists, then
$M\left\{c_{1} f(t)+c_{2} g(t)\right\}=c_{1} M\{f(t)\}+c_{2} M\{g(t)\}$, where c_{1} and c_{2} are constants.
Proof: $M\left\{c_{1} f(t)+c_{2} g(t)\right\}=v \int_{0}^{\infty}\left[c_{1} f(t)+c_{2} g(t)\right] e^{-v t} d t$

$$
\begin{aligned}
& =v c_{1} \int_{0}^{\infty} f(t) e^{-v t} d t+v c_{2} \int_{0}^{\infty} g(t) e^{-v t} d t \\
& =c_{1} M\{f(t)\}+c_{2} M\{g(t)\} \cdot
\end{aligned}
$$

Theorem: Let $f(t)$ and $g(t)$ are functions and given by $M\{f(t)\}=F(v)$ and $M\{g(t)\}=G(v)$ then

$$
M\{f(t) g(t)\}=\frac{1}{2} F(v) G(v) .
$$

Proof: We choose $F(v)=v \int_{0}^{\infty} f(w) e^{-v w} d w$ and $G(v)=v \int_{0}^{\infty} g(l) e^{-v l} d l$, then

$$
F(v) G(v)=v^{2} \int_{0}^{\infty} \int_{0}^{\infty} f(w) g(l) e^{-v(w+l)} d l d w
$$

Let $w+l=t \Rightarrow d w=d t$, then

$$
\begin{aligned}
F(v) G(v) & =v^{2} \int_{O}^{\infty} \int_{\mathrm{O}}^{t} f(w) g(t-w) e^{-v t} d l d t \\
& =v M\{f(t) g(t)\}
\end{aligned}
$$

So
$\frac{1}{v} F(v) G(v)=M\{f(t) g(t)\}$.
Now, we going to solve (1) by taking $M\{$.$\} on both sides$

$$
M\left\{u_{t t}(x, t)\right\}=M\left\{u_{x}(x, t)+\lambda \int_{0}^{t} k(t-s) u(x, s) d s+g(x, t)\right\} .
$$

By using linearity property, we have

$$
M\left\{u_{t t}(x, t)\right\}=M\left\{u_{x}(x, t)\right\}+\lambda M\left\{\begin{array}{l}
t \\
\left.\int_{0} k(t-s) u(x, s) d s\right\}+M\{g(x, t)\} . . ~ . ~ . ~
\end{array}\right.
$$

From Mahgoub transform formula, it holds that

$$
\begin{aligned}
& v \int_{0}^{\infty} e^{-v t} \frac{\partial^{2} u}{\partial t^{2}}(x, t) d t=v \int_{0}^{\infty} e^{-v t} \frac{\partial u}{\partial x}(x, t) d t+\lambda \frac{1}{v}(\bar{k}(v) H(x, v))+\bar{g}(x, v) . \\
& \Rightarrow v^{2} H(x, v)-v^{2} u(x, 0)-v u_{t}(x, 0)=\frac{d}{d x} H(x, v)+\lambda \frac{1}{v}(\bar{k}(v) H(x, v))+\bar{g}(x, v),
\end{aligned}
$$

where $H(x, v)=M\{u(x, t)\}, \bar{k}(v)=M\{k(t-s)\}$, and $\bar{g}(x, v)=M\{g(x, t)\}$.
By substituting IC into above equation, then the solution becomes

$$
v^{2} H(x, v)-v^{2} u_{0}-v u_{t_{0}}(x, 0)=\frac{d}{d x} H(x, v)+\lambda \frac{1}{v}(\bar{k}(v) H(x, v))+\bar{g}(x, v) .
$$

$$
\Rightarrow \frac{d}{d x} H(x, v)+\lambda \frac{1}{v}(\bar{k}(v) H(x, v))-v^{2} H(x, v)=\bar{g}(x, v)-v^{2} u_{0}+v u_{t_{0}}(x, 0) .
$$

This will give linear first order ODE as
$\frac{d}{d x} H(x, v)+\left(\frac{\lambda}{v^{2}}-v^{2}\right) H(x, v)=\bar{g}(x, v)-v^{2} u_{0}+v u_{t_{0}}(x, 0)$.
We can easily solve this type of ODEs and then find inverse Mahgoub transform.

EXAMPLE

Consider the IBVP [5]

$$
u_{t t}=u_{x}+2 \int_{0}^{t}(t-s) u(x, s) d s-2 e^{x},
$$

(4)
with IC: $u(x, 0)=e^{x}, u_{t}(x, 0)=0$.
$\mathrm{BC}: u(0, t)=\cos t$.
To solve (4), take Mahgoub transform on both sides

$$
\begin{equation*}
M\left\{u_{t t}\right\}=M\left\{u_{x}+2 \int_{0}^{t}(t-s) u(x, s) d s-2 e^{x}\right\} . \tag{5}
\end{equation*}
$$

By using linearity property, we get

$$
M\left\{u_{t t}\right\}=M\left\{u_{x}\right\}+2 M\left\{\begin{array}{l}
t \tag{6}\\
\left.\int_{0}(t-s) u(x, s) d s\right\}-2 e^{x} M\{1\} . . . ~ . ~
\end{array}\right.
$$

From Mahgoub transform formula, we have

$$
\begin{equation*}
v^{2} H(x, v)-v^{2} u(x, 0)-v u_{t}(x, 0)=H_{x}(x, v)+\frac{2}{v^{2}}(H(x, v))-2 e^{x} . \tag{7}
\end{equation*}
$$

By substituting IC into (7), we obtain

$$
\begin{align*}
& v^{2} H(x, v)-v^{2} e^{x}=H_{x}(x, v)+\frac{2}{v^{2}}(H(x, v))-2 e^{x} \\
& \Rightarrow H_{x}(x, v)-v^{2} H(x, v)+\frac{2}{v^{2}}(H(x, v))+v^{2} e^{x}-2 e^{x}=0 . \\
& \Rightarrow H_{x}(x, v)+\left(\frac{2}{v^{2}}-v^{2}\right) H(x, v)=\left(2-v^{2}\right) e^{x} \tag{8}
\end{align*}
$$

This will give linear first order ODE as

$$
\begin{equation*}
\frac{d H(x, v)}{d x}+\left(\frac{2}{v^{2}}-v^{2}\right) H(x, v)=\left(2-v^{2}\right) e^{x} . \tag{9}
\end{equation*}
$$

We can use integration factor $\mu=e^{\int\left(\frac{2}{v^{2}}-v^{2}\right) d x}$ to solve (9).
Therefore

$$
\begin{equation*}
\bar{H}(x, v)=\frac{\int \mu(x)\left(\left(2-v^{2}\right) e^{x}\right) d x+c}{\mu(x)} . \tag{10}
\end{equation*}
$$

The solution of (10) is

$$
\begin{equation*}
\bar{H}(x, v)=\frac{v^{2}}{1+v^{2}} e^{x}+c e^{-\left(\frac{2}{v^{2}}-v^{2}\right) x} \tag{11}
\end{equation*}
$$

Substitute $u(x, 0)=e^{x}$ and $u_{t}(x, 0)=0$ into (11), then $c=0$.
So, we now have
$\bar{H}(x, v)=\frac{v^{2}}{1+v^{2}} e^{x}$.
From the inverse Mahgoub transform, the solution is then
$H(x, v)=e^{x} \cos t$.

Fig. 1 The graph of $\mathrm{H}(\mathrm{x}, \mathrm{t})$

CONCLUSION

Mahgoub transform is characterized by its simplicity of use. Also, it is accurate and efficient technique for finding solution IBVPs of PIDEs.

REFERENCES

[1]. M Mahgoub, The new integral transform "Mahgoub Transform", Advances in Theoretical and Applied Mathematics, 2016, 11(4), 391-398.
[2]. J M Sanz-Serna, A Numerical Method for a Partial Integro-Differential Equation, SIAM Journal on Numerical Analysis, 1988, 25(2), 319-327.
[3]. A Fahim, M Araghi, J Rashidinia and M Jalalvand, Numerical solution of Volterra partial integrodifferential equations based on sinc-collocation method, Advances in Difference Equations, Web, https://doi.org/10.1186/s13662-017-1416-7.
[4]. M Dehghan, Solution of a partial integro-differential equation arising from viscoelasticity, Journal International Journal of Computer Mathematics, 2006, 83(1), 123-129.
[5]. K Aboodh, R Farah, I Almardy and F ALmostafa, Solution of Partial Integro-Differential Equations by using Aboodh and Double Aboodh Transform Methods, Global Journal of Pure and Applied Mathematics., 2017,13(8), 4347-4360.
[6]. M Mahgoub and T Elzaki, Solution of Partial Integro-Differential Equations by Elzaki Transform Method, Applied Mathematical Sciences, 2015, 9(6), 295-303.
[7]. A Alipanah and M Dehghan, A pseudospectral method for the solution of second-order integrodifferential equations, Journal of Vibration and Control, 2011, 17(14), 2158-2163.
[8]. Y Rostami and K Maleknejad, Numerical Solution of Partial Integro-Differential Equations by using Projection Method, Mediterranean Journal of Mathematics, Web. https://doi.org/10.1007/s00009-017-0904-z.
[9]. P Sahu and S Ray, Numerical solutions for Volterra integro-differential forms of Lane-Emden equations of first and second kind using Legendre multi-wavelets, Electronic Journal of Differential Equations, 2015, 2015 (28), 1-11.

