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ABSTRACT 

The partial integro-differential equations (PIDEs) have many possible applications in areas like mathematics, 

physics and engineering. Therefore, we develop a new transform, which was proposed by Mahgoub [1], for 

solving second order initial-boundary value problems (IBVPs) of PIDEs. This transform is characterized by its 

simplicity of use. 
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INTRODUCTION 

Let’s look at the second order IBVP of PIDE as follows: 
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is constant, ( , )g x t is known function and ( )k t s  is given kernel function. 

Several methods for solving PIDEs are given [2-9]. 

In this paper, we present application Mahgoub transform for solving second order IBVPs of PIDEs.  

 

 

APPLICATION MAHGOUB TRANSFORM TO SECOND ORDER IBVPS OF PIDEs  

Recently, a new transform was proposed by Mahgoub [1] in 2016. He define the function A  for 0t   as  

   1 2: ,  ,  0,  ,
j
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k

t Me   

  
 
  

          (2) 

where M , 1 2, k k are constants and M  is a finite. 

The operator  ( )M f t  is given as 
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                                     (3) 

FACT: (LINEARITY PROPERTY) 

Let ( )f t  and ( )g t  are functions whose Mahgoub transform exists, then

          1 2 1 2 ,M c f t c g t c M f t c M g t   where 1c and 2c are constants. 

Proof:          1 2
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Theorem: Let ( )f t  and ( )g t are functions and given by    ( )M f t F v and      M g t G v then 
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So 
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Now, we going to solve (1) by taking .M  on both sides 
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By using linearity property, we have 
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From Mahgoub transform formula, it holds that  
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where     , , ,  H x v M u x t      ,k v M k t s   and     , , .x v M g x tg   

By substituting IC into above equation, then the solution becomes 
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This will give linear first order ODE as   
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We can easily solve this type of ODEs and then find inverse Mahgoub transform.  

 

 

EXAMPLE  

  

Consider the IBVP [5] 
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with IC: ( , 0) ,u x e
x
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       BC:  0, cos .u t t  

To solve (4), take Mahgoub transform on both sides  
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By using linearity property, we get 
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From Mahgoub transform formula, we have 
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By substituting IC into (7), we obtain  
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This will give linear first order ODE as   
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We can use integration factor 
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  to solve (9). 
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The solution of (10) is 
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Substitute ( , 0)u x e
x

  and ( , 0) 0tu x   into (11), then 0.c   

So, we now have  
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From the inverse Mahgoub transform, the solution is then 

 , cos .x
x vH te                                                               (13) 

 
Fig. 1 The graph of H(x,t) 

 

CONCLUSION 

Mahgoub transform is characterized by its simplicity of use. Also, it is accurate and efficient technique for 

finding solution IBVPs of PIDEs. 
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