European Journal of Advances in Engineering and Technology, 2017, 4(8): 603-607

Research Article

ISSN: 2394 - 658X

Parametric 'Useful' Information Measure of Order *α* Degree *β* and Some Coding Theorem

Dhanesh Garg

Department of Mathematics and Statistics, Maharishi Markendeshwar University, Haryana, India dhaneshgargind@gmail.com

ABSTRACT

A parametric mean length is defined as the quantity

$$_{\alpha\beta}L_{u} = \frac{1}{1-\alpha}\log_{D}\left[\frac{\sum u_{i}p_{i}^{\beta}D^{-n_{i}(\alpha-1)}}{\sum u_{i}p_{i}^{\beta}}\right],$$

where $\alpha > 0 \ (\neq 1), \ \beta > 0, u_i > 0, D > 1$ is an integer, $\sum p_i = 1$. This being the useful mean length of code words weighted by utilities, u_i . Lower and Upper bounds for $_{\alpha\beta}L_u$ are derived in terms of 'useful' Renyi's information measure for power probability distribution p_i^{β} .

Keywords: Renyi's entropy, Useful Renyi's entropy, Utilities, Kraft inequality, Holder's inequality, Generalized Kraft inequality.

INTRODUCTION

Consider the following model for a random experiment S,

 $S_{N} = [E; P; U],$ where $E = (E_{1}, E_{2}, ..., E_{N})$ is a finite system of events happening with respective probabilities $P = (p_{1}, p_{2}, ..., p_{N}), p_{i} \ge 0, \sum p_{i} = 1$ and credited with utilities $U = (u_{1}, u_{2}, ..., u_{N}),$ $u_{i} > 0, i = 1, 2, ..., N$. Denote the model by S_{N} , where,

$$S_{N} = \begin{bmatrix} E_{1}, E_{2}, \dots, E_{N} \\ p_{1}, p_{2}, \dots, p_{N} \\ u_{1}, u_{2}, \dots, u_{N} \end{bmatrix}.$$
(1)

We call (1) a Utility Information Scheme (UIS). Belis and Guiasu [2] proposed a measure of information called 'useful information' for this scheme, given by

$$H(U; P) = -\sum u_i p_i \log(p_i), \qquad (2)$$

where H(U; P) reduces to Shannon's [14] entropy when the utility aspect of the scheme is ignored i.e., when $u_i = 1$ for each *i*. Throughout the paper, \sum will stand for $\sum_{i=1}^{N}$ unless otherwise stated and logarithms are taken to base D(D > 1).

Guiasu and Picard [4] considered the problem of encoding the outcomes in (1) by means of a prefix code with codewords w_1, w_2, \dots, w_N having lengths n_1, n_2, \dots, n_N and satisfying Kraft's inequality [3].

$$\sum_{i=1}^{N} D^{-n_i} \le 1.$$

$$\tag{3}$$

Where D is the size of the code alphabet.

The useful mean length L_u of code was defined as :

$$L_{u} = \frac{\sum u_{i} n_{i} p_{i}}{\sum u_{i} p_{i}} , \qquad (4)$$

and the authors obtained bounds for it in terms of H(U; P). Generalized coding theorems by considering different generalized measures under condition (3) of unique decipherability were investigated by several authors, see for instance the papers [8-10,13].

In this paper, we study some coding theorems by considering a new function depending on the parameters α , β and a utility function. Our motivation for studying this new function is that it generalizes 'useful' information measure already existing in the literature such Renyi's entropy.

CODING THEOREMS

In this section, we define a new information measure as :

$$_{\alpha\beta}H(U;P) = \frac{1}{1-\alpha}\log_{D}\left[\frac{\sum u_{i}p_{i}^{\alpha\beta}}{\sum u_{i}p_{i}^{\beta}}\right],$$
(5)

where $\beta > 0, \alpha > 0 \ (\neq 1), u_i > 0, p_i \ge 0, i = 1, 2, ..., N$ and $\sum p_i = 1$. (i) If $\beta = 1$, Then (5) becomes a 'useful' information measure

i.e.,
$$_{\alpha}H(U; P) = \frac{1}{1-\alpha}\log_{D}\left[\frac{\sum u_{i}p_{i}^{\alpha}}{\sum u_{i}p_{i}}\right].$$
 (6)

(ii) When $u_i = 1$ for each *i*, i.e., when the utility aspect is ignored, $\sum p_i = 1$, and $\beta = 1$, then (5) reduces to Renyi's entropy.

i.e.,
$$_{\alpha}H(P) = \frac{1}{1-\alpha}\log_D \sum p_i^{\alpha}$$
. (7)

(iii) When $\alpha \to 1$, and $\beta = 1$, then (5) reduces to a measure of 'useful' information due to Hooda and Bhaker [1].

i.e.,
$$H(U;P) = -\log_D \left\lfloor \frac{\sum u_i p_i \log(p_i)}{\sum u_i p_i} \right\rfloor$$
. (8)

(iv) When $u_i = 1$ for each *i*, then (5) reduced to Satish and Arun [12] entropy.

i.e.,
$$_{\alpha\beta}H(U; P) = \frac{1}{1-\alpha}\log_D\left[\frac{\sum p_i^{\alpha\beta}}{\sum p_i^{\beta}}\right].$$
 (9)

(v) When $u_i = 1$ for each *i*, i.e., When the utility aspect is ignored, $\sum p_i = 1$, $\beta = 1$, and $\alpha \to 1$, the measure (5) reduces to Shannon's entropy [14].

i.e.,
$$H(P) = -\sum p_i \log(p_i).$$
(10)

Further consider,

Definition: The 'useful' mean length $_{\alpha\beta}L_{\mu}$ with respect to 'useful' R-norm information measure is defined as :

$$_{\alpha\beta}L_{u} = \frac{1}{1-\alpha}\log_{D}\left[\frac{\sum u_{i}p_{i}^{\beta}D^{-n_{i}(\alpha-1)}}{\sum u_{i}p_{i}^{\beta}}\right],\tag{11}$$

under the condition, $\sum u_i D^{-n_i \alpha} \leq \sum u_i p_i^{\alpha \beta}$. (12) Clearly the inequality (12) is the generalization of Kraft's inequality (3). A code satisfying (12) would be termed as a

'useful' personal probability code. D (D>2) is the size of the code alphabet. When, $u_i = 1$ for each i and $\beta = 1, \alpha = 1$, (12) reduces to (3).

(i) For $u_i = 1$ for each *i* and $\beta = 1$, and $\alpha \to 1$, αL_u becomes the optimal code length defined by Shannon [14].

(ii) For $u_i = 1$ for each *i* and $\beta = 1$, (11) becomes a new mean code word length corresponding to the Renyi's entropy.

i.e.,
$$_{\alpha}L = \frac{1}{1-\alpha} \log_D \left[\sum p_i D^{-n_i(\alpha-1)} \right].$$
 (13)

(iii) If $\beta = 1$, then (11) becomes a new mean codewords length corresponding to the entropy (6).

i.e.,
$$_{\alpha}L_{u} = \frac{1}{1-\alpha}\log_{D}\left[\frac{\sum u_{i}p_{i}D^{-n_{i}(\alpha-1)}}{\sum u_{i}p_{i}}\right].$$

(iv) If $u_i = 1$, then (11) becomes a mean codewords length corresponding to the entropy (9).

i.e.,
$$_{\alpha\beta}L = \frac{1}{1-\alpha}\log_D\left[\frac{\sum p_i^{\beta}D^{-n_i(\alpha-1)}}{\sum p_i^{\beta}}\right]$$

We establish a result, that in a sense, provides a characterization of $_{\alpha\beta}H(U; P)$ under the condition of unique decipherability.

Theorem A: Let $u_i, p_i, n_i, i = 1, 2, ..., N$, satisfy the inequality (12). Then

$${}_{\beta}L_{u} \ge {}_{\alpha\beta}H(U;P), \ 1 \neq \alpha > 0, \beta > 0.$$

$$(14)$$

Proof: By Holder's inequality, we have

$$\left(\sum_{i=1}^{N} x_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{N} y_{i}^{q}\right)^{\frac{1}{q}} \leq \sum_{i=1}^{N} x_{i} y_{i},$$

$$(15)$$

where $p^{-1} + q^{-1} = 1$; $p(\neq 0) < 1, q < 0$ or $q(\neq 0) < 1, p < 0$; $x_i, y_i > 0$ for each i. Setting, $p = \frac{(\alpha - 1)}{\alpha}, q = 1 - \alpha$, and

$$x_{i} = \left(\frac{u_{i}p_{i}^{\beta}}{\sum u_{i}p_{i}^{\beta}}\right)^{\frac{\alpha}{\alpha-1}} D^{-n_{i}\alpha}, \quad y_{i} = \left(\frac{u_{i}p_{i}^{\alpha\beta}}{\sum u_{i}p_{i}^{\beta}}\right)^{\frac{1}{1-\alpha}}$$
(16)

Putting these values in (15) and using the inequality (12), we get

$$\left(\frac{\sum u_i p_i^{\beta} D^{-n_i(\alpha-1)}}{\sum u_i p_i^{\beta}}\right)^{\frac{\alpha}{\alpha-1}} \left(\frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}\right)^{\frac{1}{1-\alpha}} \le \frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}.$$
(17)

It implies

$$\left(\frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}\right)^{\frac{\alpha}{1-\alpha}} \le \left(\frac{\sum u_i p_i^{\beta} D^{-n_i(\alpha-1)}}{\sum u_i p_i^{\beta}}\right)^{\frac{\alpha}{1-\alpha}}.$$
(18)

Taking \log_D both sides of (18), we get (14). It is clear that the equality in (14) is true if and only if

$$D^{-n_i} = p_i^{\beta}$$
which implies that $n_i = \log_D \frac{1}{p_i^{\beta}}$
(19)

Thus, it is always possible to have a code word satisfying the requirement

$$\log_D \frac{1}{p_i^\beta} \le n_i < \log_D \frac{1}{p_i^\beta} + 1,$$

which is equivalent to

$$\frac{1}{p_i^\beta} \le D^{n_i} < \frac{D}{p_i^\beta} . \tag{20}$$

In the following theorem, we give an upper bound for $_{\alpha\beta}L_u$ in terms of $_{\alpha\beta}H(U;P)$.

(22)

$$a_{\beta}L_{u} < {}_{\alpha\beta}H(U;P) + 1$$
(21)

Proof: From (20), it is clear that $D^{-n_i} > D^{-1} p_i^{\beta}$.

We have again the following two possibilities.

(i) Let $\alpha > 1$. Raising both sides of (22) to the power $(\alpha - 1)$, we have

 $D^{-n_i(\alpha-1)} > D^{1-\alpha} p_i^{\beta(\alpha-1)}$

Multiplying both sides by $u_i p_i^{\beta}$ and then summing over *i*. we get

$$\sum u_i p_i^{\beta} D^{-n_i(\alpha-1)} > D^{(1-\alpha)} \sum u_i p_i^{\alpha\beta} .$$
⁽²³⁾

Obviously (23) can be written as

$$\frac{\sum u_i p_i^{\beta} D^{-n_i(\alpha-1)}}{\sum u_i p_i^{\beta}} > D^{(1-\alpha)} \frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}$$
(24)

Since $\alpha - 1 > 0$ for $\alpha > 1$, we get the inequality (21) from (24).

(ii) If $0 < \alpha < 1$, the proof follows similarly. But the inequality (25) is reversed.

Theorem C: For arbitrary $N \in \mathbb{N}$, $1 \neq \alpha > 0$, $\beta > 0$, and for every codeword lengths n_i , i = 1, 2, ..., N of Theorem 2.1, $_{\alpha\beta}L_{\mu}$ can be made to satisy the following inequality:

$$_{\alpha\beta}L_{u} \ge {}_{\alpha\beta}H(U;P) > {}_{\alpha\beta}H(U;P) + \frac{1}{1-\alpha}$$
(25)

Proof: Suppose,

$$\overline{n}_{i} = \log_{D} \frac{1}{p_{i}^{\beta}}, \ \beta > 0.$$
⁽²⁶⁾

Clearly $\overline{n_i}$ and $\overline{n_i} + 1$ satisfy the equality in Holder's inequality (15). Moreover, $\overline{n_i}$ satisfies (12). Suppose $\overline{n_i}$ is the unique integer between $\overline{n_i}$ and $\overline{n_i} + 1$, then obviously, $\overline{n_i}$ satisfies (12).

Since
$$1 \neq \alpha > 0$$
, $\beta > 0$, we have

$$\frac{\sum u_i p_i^{\beta} D^{-n_i(\alpha-1)}}{\sum u_i p_i^{\beta}} \leq \frac{\sum u_i p_i^{\beta} D^{-\bar{n}_i(\alpha-1)}}{\sum u_i p_i^{\beta}}$$

$$< D\left(\frac{\sum u_i p_i^{\beta} D^{-\bar{n}_i(\alpha-1)}}{\sum u_i p_i^{\beta}}\right).$$
(27)
Since, $\frac{\sum u_i p_i^{\beta} D^{-\bar{n}_i(\alpha-1)}}{\sum u_i p_i^{\beta}} = \frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}.$
Hence (27) becomes

Hence (27) becomes

$$\frac{\sum u_i p_i^{\beta} D^{-n_i(\alpha-1)}}{\sum u_i p_i^{\beta}} \leq \left(\frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}\right) < D\left(\frac{\sum u_i p_i^{\alpha\beta}}{\sum u_i p_i^{\beta}}\right).$$

Which gives (25).

CONCLUSION

In the present paper, we have proposed some coding theorems by considering a new function depending on the parameters α , β and a utility function. Our motivation for studying this new function is that it generalizes 'useful' information measure.

REFERENCES

[1] US Bhaker and DS Hooda, Mean value Characterization of 'Useful' Information Measures, *Tamkang Journal* of *Mathematics*, **1993**, 24, 283–294.

[2] M Belis and SA Guiasu, Qualitative-Quantitative Measure of Information in Cybernetics Systems, *IEEE Transaction on Information Theory*, **1968**, 14, 593-594.

[3] A Feinstein, Foundation of Information Theory, McGraw Hill, New York. 1958,

[4] S Guiasu and CF Picard, Borne Infericutre de la Longuerur Utile de Certain Codes, CR Acadamic Science, Paris, *Journal of Applied Science and Engineering*, **1971**, 273A, 248-251.

[5] S Gurdial and F Pessoa, On Useful Information of Order 'Alpha', Journal *of Combinatorics Information* & System Sciences, **1977**, 2, 158-162.

[6] S Kumar, Some more results on R-Norm information measure, *Tamkang Journal of Mathematics*, 2009, 40 (1), 41-58.

[7] S Kumar, Some More Results on a Generalized 'Useful' R-Norm Information Measure, *Tamkang Journal of Mathematics*, **2009**, 40 (2), 211-216.

[8] S Kumar and A Choudhary, Some More Noiseless Coding Theorem on Generalized R-Norm Entropy, *Journal of Mathematics Research*, **2011**, 3 (1), 125-130.

[9] S Kumar and A Choudhary, Coding Theorem Connected on R-Norm Entropy, *International Journal of Contemporary Mathematical Sciences*, **2011**, 6 (17), 825-831.

[10] S Kumar and A Choudhary, Some Coding Theorems Based on Three Types of the Exponential Form of Cost Functions, *Open Systems and Information Dynamics*, **2012**, 19 (4), 1-14

[11] S Kumar, R Kumar and A Choudhary, Some More Results on a Generalized Parametric R-Norm Information Measure of Type Alpha, *Journal of Applied Science and Engineering*, **2014**, 17(4), 447-453.

[12] S Kumar and A Choudhary, Some Coding Theorems on Generalized Havrda-Charvat and Tsalli's Entropy, *Tamkang Journal of Mathematics*, **2012**, 43(3), 437-444.

[13] G Longo, A Noiseless Coding Theorem for Sources Having Utilities, *SIAM Journal on Applied Mathematics*, **1976**, 304, 732-738.

[14] CE Shannon, A Mathematical Theory of Communication, *The Bell System Technical Journal*, **1948**, 27, 394-423, 623-656.

[15] O Shisha, Inequalities, Academic Press, New York, 1967.

[16] D Garg, The Number of Times a Queueing System Reaches its Capacity in Time t, *Australian Society for Operations Research Bulletin*, **2014**, 331, 1-10.

[17]D Garg and S Kumar, An Application of Generalized Tsalli's-Havrda-Charvat Entropy in Coding Theory Through a Generalization of Kraft Inequality, *International Journal of Applied Research*, **2016**, 14, 1-5.

[18] D Garg and S Kumar, Some Remarks On 'Useful' Renyi's Entropy of Order α in International Journal of trends in Mathematics and Statistics, **2015**, 4 (10), 178-183.

[19] D Garg, Exponential Directed-Divergence Convex Function of 'Type alpha, Beta', *National Journal of Multidisciplinary Research and Development*, **2017**, 2(1), 11-21.

[20] D Garg, Exponential Renyi's Entropy of 'Type Alpha, Beta' and New Mean Code-Word Length, *International Journal of Statistics and Applied Mathematics*, **2017**, 21, 08-13.

[21] D Garg and S Kumar, Parametric R-norm directed-divergence convex function, *Infinite Dimensional Analysis, Quantum Probability and Related Topics, World Science Journals*, **2016**, 19 (2).