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ABSTRACT  
 

In this paper we have estimate bounds of the number of level crossings of the random algebraic polynomials 
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0)()1,(  where ,10,)( ≤≤≤ tttak  are dependent random variables assuming real values only 

and following the normal distribution with mean zero and joint density function [ ]δδπ MM sa ')2/1(exp)2( /2/1 −−
. 

There exists an integer n0 and a set E of measure at most )logloglog/(log 00 nnA − such that, for each n>n0 and all not 

belonging to E, the equations (1) satisfying the condition (2), have at most n  log n) log (log 2α roots where α and A are 
constants. 
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INTRODUCTION 
 

Consider the family of equations ∑ ==
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0)()1,(                                (1)            

where ,10,)( ≤≤≤ tttak  are dependent random variables assuming real values only and following the normal 

distribution with mean zero and joint density function.  

[ ]δδπ MM sa ')2/1(exp)2( /2/1 −−
                                                                                     (2) 

when M-1 is the moment matrix with njijiiji ....1,0,,,0,,1 =≠<== ρρρσ   and d’ is the transpose of the column 

vector d.  
In this paper we estimate the upper bound of the number of real roots of equation (1). We prove the following 
theorem.  

THEOREM 
 

There exists an integer n0 and a set E of measure at most )logloglog/(log 00 nnA − such that, for each n>n0 and all 

not belonging to E, the equations (1) satisfying the condition (2), have at most n  log n) log (log 2α roots where α and A 

are constants. The transformation xx 1→
 makes the equation fn(x,t)=0 transformed to 

  (t)).a(a0(t).... and 0')( n
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n

r
n xta (t)(t),.....aa (t),(a and 01-nn  have the same joint density 

function. Therefore number of roots and the measure of the exceptional set in the set [−∞∞, ] are twice the 
corresponding value can be considered and now show that this upper bound is same as in [0,1]. 

 

There are many known asymptotic estimates for the number of real zeros that an algebraic or trigonometric 
polynomials are expected to have when their coefficients are real random variables. The present paper considers the 
case where the coefficients are complex. The coefficients are assumed to be independent normally distributed with 
mean zero. A general formula for the case of any complex non stationary random process is also presented.  
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Some years ago Kac (1943) gave an asymptotic estimate for the expected number of real zeros of an algebraic 
polynomial where the coefficients are real independent normally distributed random variables. Later Ibragimov and 
Maslova (1971) obtained the same asymptotic estimate for a case which included the results due to Kac (1943, 
1949), Littlewood and Offord (1939) and others. They considered the case when the coefficients belong to the 
domain of attraction of normal law. Recently there has been some interesting development of the subject, a general 
survey of which, together with references may be found in a book by Bharucha-Reid and Sambandham [1]. These 
generalizations consider different types of polynomials, see for example Dunnage [2] or study the number of level 
crossings rather than axis crossings, see Farahmand [3]. However, they assume the real valued coefficients only. 
Dunnage [4] considered a wide distribution for the complex-valued coefficients; however he only obtained an upper 
limit for the number of real zeros. Indeed, the limitation of this result, being only in the form of an upper bound, is 
justified. It is easy to see that for the case of complex coefficients there can be no analogue of the asymptotic 
formula for the expected number of real zeros. To illustrate this point we use the result due to Dunnage [4]. 

 

Suppose ( )∑ +=n
j jj xfjix )(0 β  has a real root where fj(x) is in the form of xj or cosjθ and 0,1.....nj , and j =βα j  are 

sequences of independent random variables. This implies that the polynomials ∑ =n
j j xfj )(0α  and ∑ =n

j j xfj )(0β  have a 

common root and the elimination of fj(x) lead to the equation  )..........., ,..........,( n1010 βββαααφ n =0. 
 

Thus the number of roots in the range [−∞∞, ] and the measure of the exceptional set are each four times the 
corresponding estimates for the range [0,1]. Evans has considered the case when the random coefficients are 
independent and normal. Our technique of proof is analogous to that of Evans. 

 

.2ξ  We define the circles C0, Cc, Cm and C1 as follows. C0 with centre at z=0 and radius 1/2  Ce with centre at                           
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By Jensen’s theorem the number of zeros of a regular function )(zϕ  in a circle z0 and of radius r does not exceed  

)/log(
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where M is the upper bound of )(zϕ  in a concentric circle of radius R. We use this theorem to find the number of 
zeros of fn(z, t) in each circle. Summing the number of zeros in each of the circle we get the upper bound of the 
number of zeros of fn(z, t) in the circle.  
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Hence outside a set of measure at most 22/1 )1()/2( −+nπ  we have   
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If N0 denotes the number of zeros of fn (z, t) in the circle C0 then Jensen’s theorem (J), (4) and (5) we have  
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Where C is an absolute constant. 

 

.4ξ To estimate the upper bound of the number of zeros of fn (x, t) in the circle C0 we proceed as follows. The 
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If N0 denotes the number of zeros of fn (z, t) in the circle C0 then Jensen’s theorem (J), (4), (6) and (7) we have  
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5ξ  To obtain an upper estimate of the number of zeros of fn (x, t) in the circle Cm(m=m0,m1,….M) we need the 
following lemmas. 

 

LEMMA 1 
   Let E be an arbitrary set. Then for complex numbers g, we have  
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PROOF 
Let gv=bv+icvg where bv and cv are real. Also let  
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Following Evans [Lemma] we get the proof of the lemma. 
 

LEMMA 2 

If gv, v=0,1…..are real and if    
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PROOF 
Following Evans [Lemma2] we get the proof of the lemma.  
Let Nm (r, t) denote the number of zeros of fx(z,t) in the circle with centre xm       and radius r. By Jensen’s theorem 
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By Lemmas 1 and 2, if E has no point in common with a set Gm of measure at most Qmt where  
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Since  ,0),V(xin  1 m<mx the second term in both the numerator and denominator is constant. Therefore  
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CONCLUSION 

 
Hence after solving the theorem and lemmas we have conclude that considering a polynomial (1.1) we have estimate 
bounds of the number of level crossings of the above random algebraic polynomials where under a given condition 

with mean zero and joint density function [ ]δδπ MM sa ')2/1(exp)2( /2/1 −−
. There exists an integer n0 and a set E of 

measure at most )logloglog/(log 00 nnA − such that, for each n>n0 and all not belonging to E, the equations (1) 

satisfying the condition (2), have at most n  log n) log (log 2α roots where α and A are constants. Hence the 
theorem proved. 
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