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ABSTRACT  
 

After passing two V -type atoms successively through a single mode interacting field in a cavity we arrive at a state 
which has been analyzed to study nonclassicality of the evolved state of the system. In the process we plan to study 
Mandel’s Q-parameter and normal squeezing of the resulting field. 
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INTRODUCTION  
 

A manifold of nonclassical features of quantum light delivered by interaction of an electromagnetic field with an 
atom is a central topic in quantum optics [9-10]. Jaynes- Cummings model helps us to understand interaction of a 
single atom with a high-quality cavity yielding many important results. Interaction of an atom and a laser beam in a 
cavity performed close to one of the atomic resonances leads to light emission from the atom with a rich set of 
spectral and temporal properties. Temporally, the light emitted will show antibunching with a second order 
correlation which has a minimum for zero time delay. Spectrally, with the increase of laser intensity light emitted 
will have symmetric side lobes around the central excitation frequency which is called Mollow triplet. By 
employing nonclassical light sources the performances of optical technology such as metrology, communication 
and imaging can be improved beyond the limitation of classical physics. Various schemes have been proposed in 
the context of cavity QED to generate Fock states and superposition’s of Fock states using resonant interactions of 
two-level and three-level atoms one at a time with a cavity mode followed by measurement of the atomic states. 
The production of two-photon state has been reported recently by single atom in a high-Q cavity. 
 

In another aspect, the preparation of quantum entangled states through cavity QED is a subject of intense 
theoretical and experimental studies. Studying of such states evokes insight into the fundamentals of quantum 
mechanics. They are also useful in quantum information processing. Manipulation of a light field at the single-
photon level provides a basis for important applications in quantum information science. A desired field state can 
be obtained by two elementary operations on a single-mode field. For example, photon addition or subtraction is 
known to create a nonclassical state from any classical state and both the photon-subtracted [12] and photon-added 
squeezed states were suggested to improve fidelity of continuous variable teleportation. 
 

In this paper, we consider an interacting one-mode field which interacts in a cavity with the atom by letting two V -
type atoms successively passing through it. After tracing out the atomic parts from the generated atom-field system 
we get the field left in the cavity and explore the nonclassical properties of the field.  
 

In the beginning, we describe the basic idea of one-mode interacting Fock space [1-8]. Then we give the time-
dependent state of the system containing a V -type three-level atom [9-10] which interacts with a single mode of 
interacting field successively. In subsequent sections we show nonclassicality of the evolved state with the help of 
Mandel’s Q paarameter and the initial coherent state loses its coherence and become a squeezed state due to 
interaction of field and successive passage of atom in the cavity. Lastly, we give a conclusion. 
 

BASIC PRELIMINARIES AND NOTATIONS 
 

As a vector space [1] one mode interacting Fock space Γ(IC) is defined by 
 

                   (for any n ϵ IN where I₵|n⟩ is called the n-particle subspace)       (1) 
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The different n-particle subspaces are orthogonal, that is, the sum in (1) is orthogonal. The square of the seminorm 
of the vector |n⟩ is given by 

⟨n|n⟩ = _n                  (2) 
where λn ≥ 0 for each n ϵ IN and if for some n we have λn = 0, then λm = 0 for all m ≥ n. After taking quotient, the 
seminorm in (2) becomes a norm which makes Γ(₵) a pre-Hilbert space. In the following we will consider its 
completion, which, with an abouse of notation, will be denoted by Γ(₵). 
 

An arbitrary vector f in Γ(₵) is given by 

             (3) 

for any n ϵ IN with  
 

We now consider the following actions on Γ(₵) : 

               (4) 
A† is called the creation operator and its adjoint A is called the annihilation operator. 
The commutation relation takes the form 

                (5) 
where N is the number operator defined by N|n⟩ = n|n⟩. 

In a recent paper [6] we have proved that the set  forms a complete orthonormal set and 
the solution of the following eigen value equation 

                  (6) 
is given by  

                       (7) 

where     
 

We call fα a coherent vector in Γ(I₵): 
Now, we observe that 

 

We further observe that ( ) commutes with both A†A and AA†: 
 

TIME EVOLUTION OF STATE VECTOR 
 

The scheme of the V-type three-level atomic system consists of two allowed transitions |a⟩ ↔ |c⟩ and |b⟩ ↔ |c⟩ 
where |a⟩; |b⟩ and |c⟩ are excited state, intermediate state and ground state respectively. Each interaction has a 
different mode of the field. In the rotating-wave approximation, its Hamiltonian is described by 

H = H0 + H1                  (8) 

where                                                     (9) 

and                             (10) 
Here A† and A are, respectively, the creation and annihilation operators for the field of frequency γ. |i⟩ (i = a; b; c) is 
the eigen state of the atom with eigen frequency ωi, and g is the corresponding coupling constant. We assume the 
coupling constants to be real throughout the paper. 
 

In the interaction picture, the state vector of this atom field coupling system at time t can be described by 

           (11) 
The Hamiltonian in the interaction picture is given by 

             (12) 
where 

 and  
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Fig. 1 Energy diagram of a vee-configuration three-level atom interacting with one quantized cavity mode 

 

On solving the Schrodinger equation we get the equations of motion for probability amplitudes as 

              (13) 

              (14) 

        (15) 
where we assume 

         (16) 

If the atom is initially in the state  

            (17) 

which means that the atom is in the coherent superposition state of its eigenkets |a› and |b›, and the field is in the 
superposition of the photon number states at time t = 0 

               (18) 

where , then the state vector of the total system at t = 0 can be described as 

         (19) 
With this initial condition we get 

           (20) 
where B1 is given by 

                                            (21) 
similarly we get 

        (22) 

and                      (23) 
 

Substituting the values of Cc;n(t), Ca;n−1(t) andCb;n−1(t) from (20), (22) and (23) respectively in equation(11) we can 
obtain the state vector of the system at time t in the interaction picture. 
 

At this stage we assume that α = 900 and   = 0: Also Fn ≈ Fn−1: This reduces the state vector (11) with 

           (24) 

           (25) 

           (26) 

With                      (27) 
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We assume that the atom enters the cavity with the initial state 

            (28) 
and after the evolution, for time t1, the state vector of the considered atom-field system becomes 

     (29) 
where from (24), (25) and (26) we have 

 

          (30) 

          (31) 

                      (32) 

with 
 

 
(33) 

and 
 

 
(34) 

Now after the interaction with the field if we detect the atom in the ground state |c› after time t1 then effectively 
atom absorbs no photon but projects the cavity field into the state 

                    (35) 

where, from (30)    (with B1 given by (33))                      (36) 
If we now consider the passage of a second identical atom through the cavity[6, 7], then the field inside the cavity 
becomes  

         (37) 
On solving, as in the previous case, we see that the second identical atom transits through the cavity for time t2 and 
for g1 = g2 = g with zero detuning, the system evolves to 

  (38) 

Where                      (39) 

           (40) 

           (41) 
Now, we assume Δ′= 0 to get 

             (42) 
From (39), (40), (41) and (42) we now have 

            (43) 

           (44) 

           (45) 
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The state vector  (38) describes the time evolution of the whole atom-field system but we now concentrate on 
some statistical properties of the single-mode field. The field inside the cavity after departing the second atom is 
obtained by tracing out the atomic part of  as 

              (46) 
where we have used the subscript a(f) to denote the atom(field). 
This  ρ f (t2) will be of consideration throughout the next section to determine the statistical properties of the field 
left into the cavity. 
Now, from (38), we get 

 

 

        (47) 
From (47) we have 

 

                        (48) 
 

STATISTICAL PROPERTIES OF THE RADIATION FIELD 
 

In this section we investigate two nonclassical effects, namely, sub-Poissonian photon statistics and quadrature 
squeezing. 
 

Sub-Poissonian Photon Statistics 
The simplest criterion [11] for a single-mode radiation to be a nonclassical state is 

             (49) 

where                (50) 

and                 (51) 
Before we proceed for the calculation proper we obtain the following results: 

            (52) 
and  

             (53) 
From (52) and (53) we now have 

        (54) 
and 

  (55) 
Incorporating calculations (54) and (55) we get 

        (56) 
Where 
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If the radiation field [10] is initially in a coherent state,           

Then 
 

(57) 

Hence 
  

(58) 

Substituting the value of |Fn(0)|2 from (58) and assuming βt1 ≡θ1; βt2 ≡ θ2 and finally taking t1 = t2 = t so that θ1 = 
θ2 = θ  with 

 
we get 

  (59) 

where 

  
To draw the graph of QM against gt we assume gt =x; η = 1 where we choose λn ~ n!; (n!)2 and [n].  
Here [n] = (1 − qn)/(1 − q); 0 < q < 1. 

 
Fig. 2 Mandel’s QM as a function of gt for a coherent state input and λn ~ n! 

 

 
Fig. 3 Mandel’s QM as a function of gt for a coherent state input and λn ~ n!2 

 

Fig. 4 Mandel’s QM as a function of gt for a coherent state input and λn ~ n! 
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Squeezing Properties of the Radiation Field 
To analyze the squeezing properties of the radiation field [12-13] we introduce two hermitian quadrature operators 

            (60) 
These two quadrature operators satisfy the commutation Relation 

            (61) 
As a result the quadrature operators in (60) satisfy the uncertainty relation 

           (62) 

A state is said to be squeezed if either ⟨(ΔX)2⟩ or ⟨(ΔY )2⟩ is less than . 
To review the principle of squeezing, we define an appropriate quadrature operator 

           (63) 
Then we get 

           (64) 
and hence 

               (65) 
After some simplification we get 

            (66) 
From (66) we get, for operators in their normal orders, 
where ζ = ⟨A†2⟩−⟨A†⟩2. After observing that ⟨A⟩ = ⟨A†⟩ 
we get 

          (67) 
Where . After observing that  
We get 

          (68) 
To minimize (68) over whole angle θ we observe the following fact: we take to obtain 

        (69) 
Finally, from (68) and (69), we have 

       (70) 
We now calculate 

         (71) 
And 

          (72) 
For the problem under consideration, ⟨A†A⟩ has been derived in (54) and the other terms are given by (71) and (72). 
Substituting the above expectation values in equation (70) we obtain an expression of Sopt for initial 

coherent : We draw the plot of Sopt as a function of |α0| for different values of gt where we 
choose λn ~ n!; (n!)2 and [n]!. Here [n] = (1 − qn)/(1 − q); 0 <q < 1. 

 
Fig. 5 Plot for Sopt as a function of |α0| with coherent state input and λn ~ n! 
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Fig. 6 Plot for Sopt as a function of |α0| with coherent state input and λn ~ (n!)2 

 

 
Fig. 7 Plot for Sopt as a function of |α0| with coherent state input and λn ~ [n]! 

 

CONCLUSION 
 

We have thus investigated the effect of passage of a three level atom one after another successively in a cavity 
containing an one-mode interacting field. In the process we observed a coherent state loses its coherence and the 
field after interaction becomes a nonclassical state which is evident from the study of Mandel’s Q-parmeter and 
squeezing of the field inside the cavity. Mandel’s parameter clearly shows a negative portion for λn ~ n!; n!; (n!)2; 
[n]! which shows nonclassicality of the field inside the cavity. 
 

To further support the nonclassical nature of the field we observed the squeezing effect in the Fig. 5, Fig. 6 and Fig. 
7. In Fig. 5 we see that maximum squeezing occurs for gt = 0:5 whereas in Fig. 6 the maximum squeezing occurs 
for gt = 0:5 and in Fig. 7 maximum squeezing occurs for gt = 0:2. Thus the successive injection of two three-level 
atom reduces the coherent field inside the cavity into a nonclassical state. 
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