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ABSTRACT

Acoustic Source Localization (ASL) means to estimate the position of the source, emitting sound. It has a wide
application area. Based upon the literature survey, ASL techniques have been broadly classified as Time Delay
Estimation (TDE), Beamforming, High Spectral Resolution, Energy aware and Binaural based. There are different
methods based upon these classifications such as Cross correlation, Generalized Cross Correlation (GCC) and
Adaptive Eigen Value decomposition (AED). It has been shown by the researchers that different techniques have
proved to be effective in different environment conditions. GCC and AED have better performance in ideal
propagation scenarios or where the reverberation is low. In moderate to high reverberation channels, SRP-PHAT
has been proved to give more accurate results than GCC but the Computational complexity has always been a
challenge here. High spectral resolution methods are quite complex but have given better resolution over other
techniques and mainly preferred for narrowband signalsto find their Direction of Arrival (DOA).

Key words. Acoustic Source Localization, Time Delay Estimatio@ross correlation, Generalized Cross
Correlation, Maximum Likelihood, Adaptive Eigen Vial Decomposition, Steered Response Power, Phase
Transform

INTRODUCTION

The aim of Acoustic Source Localization (ASL) systés to estimate the position of sound sourcesrin a
environment by analyzing the sound field with a nofhone array, a set of microphones arranged ttucaphe
spatial information of sound. In general, most A&ichniques rely on the fact that an impinging wémt
reaches one acoustic sensor before it reacheseaarjflj.

ASL has wide application areas, as automatic carsi@ring in conference hall, surveillance, teléemncing,
speech enhancement, health monitoring, industmal manufacturing automation, traffic control, hegriaid
devices, and human computer interaction, sonamryatiobile phone location finding, navigation anidbgl
positioning systems, localization of earthquakecepires and underground explosions, robots, mieisirsc
events in mines and sensor networks [14] [21] 2] {

ACOUSTIC SOURCE LOCALIZATION (ASL) TECHNIQUE
These can be broadly divided into TDE, BeamformBughspace methods, Energy aware and Binaural based.

Time Delay Estimation (TDE)

TDE localization is a two step procedure, firsttasestimate the time difference of arrival of thgnal at the
microphones pairs as shown in Fig.1. Second sttgedalculate location of source from TDOA usipg@priate
algorithm like spherical interpolation, hyperbolittersection. TDE methods are also called TDOA méshor
interaural time difference (ITD). TDOA based methauth high sampling rates are suitable for neeldfand far
field high accuracy wideband source localizationeYan [1] has given a method for localizationoat kampling
rate based on five element cross microphone arkdipimum requirement for 2D and 3D source localizatis 3
and 4 microphones respectively to avoid front-beskfusion effects in isotropic antennas [7]. Thishnique is
used in bulk as it is computationally less burdemsas compared to beamforming [23]. Uncertaintyif DA
leads to error in localization, which is a very gbutask due to reverberation, background noise sratt
observation interval. Equation complexities andwaygence of non linear equation are the major sstiesecond
stage. Different methods based on TDE are CC, ABD(C, LMS and ASDF have been developed to improve
their performance in low SNR (Signal to Noise Ratim an echo free field environment source to optione
signal is shown in Fig.1.
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In Fig.1,7,(t) andr,(t) are the signals received at microphones 1 ams$2ectively due to sourSgt) and can be
represented using Eq. (1) and Eq. (2) as giverwbelo

ri(t) = aS(t) +ny(t) 1)

r(t) = aS(t — 1) + ny(¢) 2)
wherea is attenuation factor, 8 t < T, T is the observation intervak ¢ the extra distance wave has to travel to
reach microphone 2 with respect to microphone Jereit is the speed of sound in the medium aigrelative
delay of r,(t) with respect tor;(t), n,(t) andn,(t) are noises added to the source signal while tiageto
microphone array[9][11].

Cross Correlation
It is the most basic method of TDE [7]. It correltthe microphone output and considers the timenaggt that

corresponds to maximum in tiRe,,, (t) as the estimated delay.CC can be modelled by:
Ry1r2 (1) = E[r ()1, (t — )] 3)
Tee = arg max([Ryy,2(7)] (4)

Generalised Cross Correlation (GCC)

GCC based source localization is most popular amD@A due to its accuracy and moderate computationa
complexity, which was proposed by Knapp and G. &4d27] as an improvement over CC. It is also knas
Cross-Power Spectrum Phase (CSP) [26][10].

Rr1r2 (T) = f_oooo lp(f) Gr1r2 (f)ejznfrdf; (5)
Tee = arg max[Ryq,2(7)] (6)
nit)
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Fig. 1 Time-delay associated with two microphones Fig. 2 Generalized Cross-correlation method

In equation 5, cross correlation is found usingitiverse DFT of the cross power spectrum of the digoals where
G,12(f) is the cross spectrum of the two received signaha@tmicrophone array) is the weighing function and
7. IS the delay corresponding to maximum valu®gf., (t). GCC assumes an ideal free field model and pegorm
well in moderate noise and reverberation only. Embiguity inherent in TDOA estimation in reverbdran
environment through GCC maxima search can be at&ibto unknown number of signal path from soue t
microphones. To solve the ambiguity Maria et al][b@ve given improved TDOA Disambiguation technigue
Zhang [16] has given A Two Microphone-Based Applofar Source Localization of Multiple Speech Sousrte
limit the number of resources required.

The correlation peak is sharpened using differazighing function (shown in Table 1), to improve tlesolution of

TDE.
Table-1List of the Weighing Functions used in GCC

Name Value
CcC Yec(f) =1
PHAT Ypuar(f) = 1/|Gr1r2(f)|
1 [Vrirz (f)|z 2 |Grirz (f)|2
ML = - —_—
V() = o o WNETYrra (DI = 22000
ROTH lpRoth(f) = 1/Gr1‘r1 (f) or 1/Gr2‘r2 (f)
SCOT Yscot () = 1/Gr1‘r1 (f)GrZ‘rZ (f)

Cross correlation is a special case of GCC wherevikfighing function is 1.
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ML has proved to be optimal and robust scheme érecent source signal. Its weights the cross-saleptrase
according to the estimated cross-spectral phasenwhe variance of the estimated phase error is the
least.]y,1,, ()]%is the magnitude coherency function. The more weiglgiven to the high correlation frequencies
and those corresponding to near zero correlatierdaremphasized or in other words, it attenuatedrédguencies
fed to correlator where SNR is low. However, itegva complicated non linear optimisation problenemvimultiple
sources are encountered and doesn’t even givdasabiy/ performance in reverberant environmentt agorks on
ideal propagation modeDranka [2] has provided us with Robust Maximumaélikood Acoustic Energy Based
Source Localization in Correlated Noisy Sensing iEmments. Zhang [21] has given maximum likelihood
framework for ASL and beamforming in distributed eting application, to capture superior speech tuaking
microphone arrays.

PHAse Transforn (PHAT) has been widely used due itsitghib avoid spreading of the peak and anti-jamming
ability, while calculating cross correlation, thieme uncertainty in TDOA reduces. Only phase infation is
retained after cross spectrum is divided by its mtage [23]. With time PHAT weighing became verypptar
which is also called pre-whitening filter. When dseith GCC, it is called GCC-PHAT.

Adaptive Eigen Value Decomposition

AED another popular method for ASL, introduced bgnBsty [25], working on reverberation model valBCC
which works on ideal propagation model. The AEDoalkihm actually amounts to a blind channel ideaéfion
problem, which then seeks to identify the chanrwafficients, corresponding to the direct path eletseThe
extension of the AED in the case of multiple midropes was proposed by Huang & Benesty, and itllsdca
Adaptive Blind Multichannel Identification (ABMCI)11]. The eigenvector corresponding to the minimiaigen
value of the covariance matrix of the microphorgnals contains the impulse responses between thieesand the
microphone signals and therefore all the infornratiee need for time delay estimation.

We assume system LTI, and then we can write
T (mh, = rT,()h, (7)
Where
ri(n) = [riy(n) rj(n-1)....r;(n-M+1)], i=1,2
are the signal samples at the microphone outpudsEnis transpose of matrix. The impulse resporsetor of
length are defined as
h; = [hip hiy . hjm-q]" =12 (8)
Linear relation in Eq.(7) follows from fact thgt=s = h;, i = 1,2
ry *hy =s*hy *h, 9)
The covariance matrixes of the two signal is
R R
R = [ rirl rlrz] 10
Rrzrt Rezro (10)

RTl'Tj = E{rl(n)T}T(n)} I’J = 1’2
Considering @M X 1 vectoru = [_hﬁ ]
1

It can be seen that Ru=0, which means that theweds the eigenvector of the covariance matrisoResponding
to the eigen value 0.

Aver age Squar e Difference Function (ASDF)
The ASDF method is based on finding the positiorithef minimum error square between the two recenady
signals and considering this position value ae#ignated time delay.

Raspr(¥) = 2 ZN3[r () — ry(n + 1)) (11)
Tuspr = arg min[Ryspr(7)] (12)

This method has a drawback that its accuracy dwdpen the noise at two sensors is correlated wighdibsired
signal, high reverberation level, background ngieese all can be combined to Low SNR), observatiterval is
small or noisds not Gaussian. In many practical speech proogsgiplications, the Discrete Fourier Transform
(DFT) coefficients are computed from finite duratisignals, which make the Gaussian assumptiorfaessirable
choice for signals whose time domain distributians non-Gaussian. Souden et al [14] has considbrdategories,
ASDF and (with AMSF average magnitude sum functiamd cross correlation using arbitrary number of
microphones.

Beamforming
Beamformer is used to scan at predefined locatidrere source is located. The point correspondingotarce
location gives the maximum power output.
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In Beamforming, the microphones output is delayed added in such a way that signals from desirezttion add
coherently and from other direction and noise adbherently. Delay and sum beamformer are the sishine
whereas others like capon beamformer are more addawhich involves filter, delay and sum [11].

Delays,; Xt

Delays, 4—/\/)ﬂ

_ Source
Delaydy.1 <J\;(M7(t)

Fig. 3: Delay sum beam for ming method

Output

&

The signal received at microphone is given by eqodielow:

T () = 5() * h(ds, t) + np(t) (13)
s(t) is the source signdL(cfs, t) is the impulse response of the path from sourcenimophone. Output of a
beamformer is summation of the microphone sigriés adding appropriate delay to make them coherent

y(t,6,6;...6y) = mﬂ/[ T (t — 6) (14)
In frequency domain it is given by
Y(@,81,8, e, 83) = Tt G (@) Ry (w) e7/90m (15)

This leads to reinforcement of signal from part@ecubirection and therefore called steered respdtmeer
(SRP)[5][6][20]. The power in frequency domain &fided as

P(84,6, ...,04) = f_wm Y (61,85 ...00) Y (w,84,6, ..., 0u)dw (16)
On substituting the value of Y from Eq. (15) in E46) and on rearrangement we get

P(81,85 ., 8y) = TP BT 7 (Gr(@) 6" 1 (@)) K ()X "1 (@) /%W dw  (17)

(6, = 8) = 7w (18)
Note that integral converges in practice, the nghane signal and filters have finite energy anddfwe the
summation has been interchanged with integration.

P(61,8;..,6y) = ZﬁzT Z%zrln f_ww(ll’kz () (X ((U)X*L(w)) e/ Tk dew (19)
Y (w) is the weighing function.
Ria = 5= o (i (@) (X (@)X (@) 7Ttk dw (20)

This peak can be calculated by several methodsgikeient search. The major limitation here is cotafonal
complexity as objective has to be calculated aryepeint in space. Improvement has been done usinigus
methods as SRC (stochastic region contractionyseada fine region contraction (CFRC). Marti [5lshsuggested
modified SRP using coarser spatial grids insteadcastly grid search procedure. Lima [3-4] has pegub
Volumetric-SRP (V-SRP), deploying a sparser voluioegrid to achieve significant reduction in comgtidnal
complexity without sacrificing accuracy of locatiestimates. By appending a fine search step to/tB&P, its
refined version (RV-SRP) improves on the comprorbisiveen complexity and accuracy. Yan [6] has atattd
SRP method using clustering search. Yongyun [18&] ¢igen ASL using region selection which reduces th
complexity.

Beamforming methods are single stage, as locadizdtere is one step process unlike TDE. Insteaslooking on
pair wise time delay, it exploits the multituderoicrophones to overcome the limitation given byhyedecision and
reverberation. This method allows one to work omdpdata segments and to localize multiple speakérere SRP
will peak multiple times. SRP-PHAT is a popular hred, in which PHAT weighing function is used.

High Spectral Resolution Methods

It is based upon the spatiospectral correlationrimathich can be derived from the signals receil®dthe
microphone array. First it decomposes the crosselation matrix of microphone signals into Signaddanoise
subspace using Eigen value decomposition and tencls is performed using Noise or signal Subspadead the
most likely DOA. DOA based beamforming and subspaethods typically need large number of microphdoes
high accuracy narrowband sound source localizatidar filed cases [7]. They also have higher pssigg need in
comparison to other method. This category includesoregressive modeling, minimum variance spectral
estimation. Some of these methods are limited tdidéd, which means the sensors are supposed tarbaway
from the sound source, and linear array situatidmere the microphone array are deployed in a linalso needs
time to search in the whole space for maximum. fif@aimum is supposed to be a sharp maximum and ean b
easily found. They are preferred for the narrowbaighals. ESPIRIT [19] (Estimation of Signal paraens via
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Rotational Invariance Techniquend MUSIC [19] (Multiple Signal Classification) aexamples of this class.
MUSIC is very popular and widely used. First it wased in spectral estimation to estimate the freges and
characteristics of the wave fronts and later dguediofor DOA estimation for narrowband signal. Withe MUSIC
has been modified and application areas have isedealt can also be used for with wideband sobiycapplying
dividing entire band into segments [19]. Yan [baF given new hybrid algorithm for ASL.

BINAURAL BASED

These algorithms used are inspired from the negyobnd popular with name Head Related transfer tiomc
(HRTF). This is commonly used technique for locaian in commercial Robots. The physical system
constructed using manikin head and two microphgh&sed on the body. In a dual-microphone arrag itsually
assumed that the difference in the two channelgmiged to a small time delay (or linear phase iaguency
domain) and therefore the cross-correlation is pdakt the time corresponding to the delay. Thughous that
search for extrema in cross-correlation wavefornesc@mmonly used. The time delay approach is basethe
assumption that the sound waves propagate aloniggke path from the source to the microphone arad the
microphone response of the two channels for thergsource location is approximately the same. tieofor this
to hold, the microphones should be identical, égrald, and, near each other relative to the soimcaddition there
should not be any obstructions between or neamiceophones. This technique also is used by fiétdobist to
study animal presence and their behaviour. Alild7hhas purposed N-dimensional N-microphone sosodrce
localization using ILD-TDE-HRTF methods simultanstyy which has lead to reduction in microphone esjuent
for localization.

S

Energy Based or Interaural Level Difference (ILD) or Intensity Level Difference (ILD)

In these algorithms, energy measured at individealsors is used for localization. It is known timafree space,
acoustic energy decays at a rate that is invepelgortional to the distance from the source. Tioeeg if we take
simultaneous acoustic energy measurements emitied &n Omni directional acoustic source at differ&nown

sensor locations, then it is possible to inferlteation of the source based on these readingsqtiires relatively
few computations and consumes little communicabandwidth, and therefore is suitable for low powperations
[2] [15].

Let there beN sensors deployed in a sensor field in which a taegeits acoustic signals. The signal energy
measured on th& sensor over a time intervialdenoted by (t), can be expressed as follows:

yi(®) = 13 31 (0) (21)

The time window isT = M/f, where M the number of sample points per time window figjs the sampling
frequency.

t+L t+l
yi® =33 FsE@ + 13 FvE(©) (22)
2 2
wherer;(t) is the received signal at the sampling paspft) is the received signal without noise, an@t) is the

AWGN (Additive White Gaussian Noise). Haengi [244shgiven other challenges has opportunities inlegsse
sensors networks.

Timeof Arrival (TOA)

Thisis a very basic technique where distance is catedllay time multiplied by speed. When the two mptrones
are taken as shown in Fig. 4, there is back forttbiguity which is resolved by taking third micropteinto
account as shown in Fig. 4. Accuracy is confinedLime of Sight (LoS) condition. Signal TOA measurthis
relatively direct to acquire since the sensor noae determine the signal arrival time by simplynidfging and
locating a known preamble from transmitted sourggnad. When utilizing TOA measurements for source
localization, it is often assumed that the sourm sensor nodes cooperate such that the signahgatpn time can
be found at sensor nodes. However, such collaloordietween source nodes and sensor nodes is naysalw
available. Thus, without knowing the initial sigrtednsmission time at the source, from TOA alohe, gensor is
unable to determine the signal propagation timenfits source to the measuring sensor. One wayckietahis
problem is to exploit the difference of pair wis©A measurements, i.e., time-difference of arriveDQA), for
source localization [13]The main limitation of this technique is that tlrusce has to be known to the receiver and
the developed system is only suitable for a smalirenment due to high path loss [13].

. \.f

Fig. 4 TOA measurementsusing 2 and 3 microphones
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CONCLUSION

Various Acoustic source localization techniquesehbeen studied. Each technique has its limitatiwh taerefore
usage is application specific. It's up to researt¢bechoose a technique for his application. Thefdfhas attracted
many researchers to work in real time, with compleban environment or forest area or open ter@improve the
performance of existing technique.
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