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ABSTRACT  
 

An analytical investigation for the creeping motion of a spherically symmetric fluid-permeable composite sphere 
composed by a uniform porous core and a uniformly surrounded porous shell located at the center of a spherical 
cavity filled with an incompressible Newtonian fluid is presented here. In the limit of small Reynolds number, the 
Stokes and Brinkman equations are solved for the flow field of the system. The hydrodynamic drag force exerted by 
the fluid on the composite sphere and wall correction factors are also obtained here. For a given geometry and 
permeability ratio, the variations of the wall correction factor are discussed. However, Keh and Chou [3] studied 
translation and rotation of a spherical particle composed by solid core and a surrounding porous shell located at 
the center of a spherical cavity filled with a fluid but this paper is different from that paper as core is taken porous 
here in place of solid core taken by  above author. Another interesting thing is that permeability of core and 
surface layer on the core are taken unequal here. For the purpose of verification of results, in particular for the 
limiting cases, the analytical solutions describing the drag force on a composite sphere in the spherical cavity are 
reduced here for a simple solid sphere and simple porous sphere and obtained the results similar to Keh and Chou 
[3].  
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INTRODUCTION 
 

The problem addressed in this paper is to obtain the wall effects on the creeping motion of an arbitrary composite 
sphere in concentric spherical cavity. The flow inside cavity wall and outside composite sphere is governed by the 
Stokes’ equation. The flow within the porous layer and porous core (with different permeabilities k2 and k1 

respectively) are governed by Brinkman equations. Boundary conditions e.g. no slip and matching conditions are 
employed on flow governing equations to obtain solution of the problem. Our objective here is to determine the 
hydrodynamic drag force exerted on the composite sphere (porous core). The wall correction factor is evaluated and 
its variation is studied numerically.  
 

The problem has many applications in nature e.g. transport phenomena in environment, flotation, sedimentation, 
electrophoresis, spray drying, agglomeration and motion of blood cells in an artery or vein., transport of radio-
nuclide from deposits of nuclear waste materials and other forced and convective flow associated with the 
fundamental geometries of internal (cavities, annulus, etc.) and external (over surfaces) flows. 
 

MATHEMATICAL FORMULATION 
 

Referring to Fig. 1, consider the creeping motion of a non-deformable composite sphere of radius b, consisting of a 
homogeneous porous core of radius a and permeability k1 covered by a homogeneous porous shell of thickness b - a 
with permeability k2 in a concentric spherical cavity of radius c filled with an incompressible Newtonian fluid of 
viscosity µ. We shall suppose that the composite sphere to be non-deformable and its centre translate with constant 
velocity U in the positive z direction. Apart from a constant velocity U, the problem is same to that of a spherical 
cavity moving in the negative z direction with uniform velocity U. Let us introduce a spherical co-ordinate system 
(r, θ, ϕ) with the origin located at the cavity centre and the line θ=0 as the axis of symmetry, in the direction of the 
sphere velocity U approaching the system. The Reynolds number is assumed to be sufficiently small so that the 
inertial terms in the fluid momentum equation can be neglected, in comparison with the viscous terms. The porous 
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core region (r ≤ a), the porous surface layer region (a ≤ r ≤ b), and the region outside composite sphere and inside 
spherical cavity (b ≤ r ≤ c), are denoted as regions I, II  and III  respectively. Then, the fluid flow in regions I and II  is 
governed by Brinkmen equation and the equation of continuity: 

 

2v ( / )vi i i ik pµ µ∇ − = ∇                                             (1)  
.v 0i∇ =

                                           
(2)   

where 1,2i = . 
For the fluid flow in region III  is governed by Stokes equation and the equation of continuity: 

2
3 3v pµ∇ = ∇

                                      (3)    
3.v 0∇ =

                                                                                                                       (4)   
The subscripts 1, 2 and3 refers to the physical quantities in regions I, II  and III  respectively. 
Here, we have assumed that the fluid has the same viscosity inside and outside the composite sphere [5]. 

  
 

Fig.1 Composite sphere of radius b with a porous core of radius a in a concentric spherical cavity of radius c 
 

BOUNDARY CONDITIONS 
 

The following boundary conditions are used to analyze the flow in the three regions.
 
The four matching conditions 

are imposed on the surface of porous core ( )r a=  [2 and 7]. 

1 2r rv v=
                                            (5)  

1 2v vθ θ=
                                            

(6)  

(1) (2)rr rrτ τ=
                                    

(7)
      

  (1) (2)r rθ θτ τ=
                                      

(8)
  

The boundary conditions at the outer surface of the porous surface layer ( )r b=  due to the continuity of velocity and 
stress components, which is physically realistic and mathematically consistent for the present problem [1, 5-6, 8].

 
2 3r rv v=

                                                (9)  
2 3v vθ θ=                                                    (10)  

(2) (3)rr rrτ τ=
                                        

(11)
 

(2) (3)r rθ θτ τ=                                                                                                              (12)  
The no-slip boundary condition at the spherical cavity surface ( )r c= is  

3 cosrv U θ= −                                           (13)  

3 sinv Uθ θ=
                                             (14)

  
Here, rrτ and rθτ are the normal and shear stresses for the fluid flow relevant to the particle surfaces. These 

conditions take a reference frame that the composite sphere is at rest and velocity of the fluid at cavity wall is the 
particle velocity in the opposite direction. Since we take the same fluid viscosity inside and outside the composite 
sphere, use the fluid velocity continuity, and neglect the possible osmotic effect in composite sphere, normal 
component of stress is equivalent to the continuity of pressure. 
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SOLUTION OF THE PROBLEM AND DETERMINATION OF ARBITRARY CONSTANTS 
 

As the flow is axially symmetric, we introduce the Stokes stream function ( , )i rψ θ  satisfying the equation of 

continuity on taking  2

1
 

sin
i

riv
r

ψ
θθ

∂
= −

∂                                                    
(15)  

1

sin
i

iv
r rθ

ψ
θ

∂
=

∂
                                                                     (16)               

where 1( , )rψ θ , 2 ( , )rψ θ
 
and 3( , )rψ θ  correspond respectively to regions I, II  and III . Eliminating pressure 3p  from 

equation (3) by taking the curl and making use of equation (4), we get  
 4

3 0E ψ = ,     (b ≤ r ≤ c),                                                       (17)  

Where 2E  denotes the Stokes stream function operator given by    

2
2 2

sin 1
( )
sin

E
r r

θ
θ θ θ

∂ ∂ ∂= +
∂ ∂∂

                                  (18)                                     

Accordingly, Eq. (1) and (2) can be expressed for i=1 and 2 in terms of the stream functions, as 

( )4 2
1 1 1(1/ ) 0 ,  E k E r aψ ψ− = ≤                                                                                     (19)      

( )4 2
2 2 2(1/ ) 0,  E k E a r bψ ψ− = ≤ ≤                                                                                (20)  

A solution to Eq. (17), (19) and (20) suitable for satisfying boundary conditions on the spherical surfaces is [3-4, 6]  

                          
2 1 1 1 2

1 1 1( ( sinh( ) cosh( )))sinA Bψ ε λ λ κ κ λ κ λ θ− − −= + − , ( )λ α≤                                                           (21) 

          ( ) ( )1 2 1 1 1 1 2
2 2 2 2( ( cosh( ) sinh( )) ( sinh( ) cosh( ))) sin ,             22C A G Bψ ε λ λ κ λ κλ κλ κ λ κλ κλ θ α λ β− − − − −= + + − + − ≤ ≤         

                              ( )1 2 4 2
3 3 3 sinC E A Fψ ε λ λ λ λ θ−= + + + ,  ( )β λ γ≤ ≤                                                                    (23)  

where the dimensionless variables and constants ( ) 1 4
1 2r k kλ −= , ( ) 1 4

1 2a k kα −= , ( ) 1 4
1 2b k kβ −= ,

 ( ) 1 4
1 2c k kγ −= ,

( )1 2
1 22 U k kε = and ( )1 4

1 2k kκ = . We denote the ratio of permeability of porous core to porous shell of composite 

sphere by 4κ . The dimensionless constants A1, A2, A3, B1, B2, C2, C3, E, F and G are found from Eq. (5) to (14). The 
procedure is straightforward but tedious, and the expressions for these constants are lengthy, we do not present them 
here except E which is required for the drag to the composite sphere by fluid external to composite sphere given by  

2 3 5 3 6 4 2 5 2 5 3 6
2 9 10 1 7 9 10 7 11 13 13

2 3 2 3 4 2 2 2 3 6 5
0 7 12 1 3 6 7 2

3 3 6 2
1 7 9

(6 ( (( 45 ) ( 6 45 ) ) 30 ( ( ) (

) ))) /(3 ( (180 ( ) ( ) (4 7 4 ) ) 6 ( 45 ( 20 9

10 ) ) )

E s s s s s s s s s s s

s s s s s s s s

s s s

γκ κ βγ κ β κβ κ γ κ β β β κβ κα

α κ κ κ β β γ β γ β βγ γ κ β β γ β β γ

β γ γ κ

= − − + − − + + + +

+ + − + − + + + − + − +

+ + 2 3 3 2 2 4 3 6 5 3 3
2

6 2 3 6 5 3 3 6 2 2 3
1 7 10 7 11 13 13 0 12

(3(60 ( ) (8 9 3 ) ) 6(45 (20 36 10

) ) ) 6 ( 90 (20 27 5 2 ) )( ( ) ))

s

s s s s s s s s s

κ β β γ β βγ γ κ β γ β β γ β γ

γ κ β γ β β γ β γ γ κ κα α κ

+ + − + + − + + −

− − − + − + + + +

 

where the dimensionless parameters s0, s1, s2, s3, s4, s5, s6, s7, s8 , s9,s10,s11, s12,s13, s14 and s15  are given in appendix. 
 

EVALUATION OF DRAG ON COMPOSITE SPHERE 
 

Evaluation of drag force is important in the applications of the flow problem we are investigating. Drag on the 
sphere is the force exerted on it by the moving fluid. The drag force (in the z direction) exerted by the external fluid 
on the composite sphere (porous core) with the spherical boundaryr b= can be evaluated as: 

 2
3 3 3

0 2 2
sin

sin
D r rd

r r
π ψπµ θ θ

θ
 ∂ ℑ=  ∫  ∂  

                    ( )24

 
Substitution of Eq. (23) into the above integral results in the simple relation 

( )1 4
1 24D U k k Eπµ=                                  ( )25

 
where E is same as for equation (23). 
 

RESULTS AND DISCUSSION 
 Some Cases and Known Results:  
(A) DRAG  
• Whenγ → ∞ , the expression for the drag forceD is the reduced result for the translation of an isolated composite 

sphere in an unbounded fluid is given by  ( )1 4
1 24D U k k Eπµ∞ ∞=

                  (26)                                        

Where                        

( )
( )

2 3 4 2 2 3 2 3
2 9 10 1 3 7 2 9 0 7 1 3 7 8

12 7 11 12 13 1 7 9 10 3 7

2 3 3
8 13

(3 ( )) /(3 2 3 (3 ( cosh ( )

sinh( ( ))) 2 ) 6 ( ) 3 ( (3( ) cosh ( )

3( 1)sinh( ( )) ) ))

E s s s s s s s s s s s s s s

s s s s s s s s s s s

s s

κ βκ β κ κ α κ κ βκ κ α β ακ

κ α β ακ βκ κ α β κ κ α β

αβκ κ α β α κ

∞ = + + + − +

+ − − − + + + − − −

+ − − +
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• When permeability of core and surface layer of composite spherical particle are equal i.e.1 2k k k= = (say), 

(equivalently the radius of porous core is equal to radius of outer surface of composite spherical particle i.e. a=b) 
the expression for the drag force D reduces as 

1 11 24D Uk Eκ κπµ=
                                               (27) 

for the translation of an isolated porous sphere of radius b  in a spherical cavity, here  

               
  

1 3 3 5 5 3 5 5 6 8 7 6 2 6

5 2 3 2 4 6 8 7 6 5 2

3 2 4

(6 ( (15 )cosh( ) (15 6 )sinh( ))) /( (60 4 9 6 4

2 (5 63) 3 (90 20 3 )) cosh( ) 3(20 8 15 2 2 (5 36)

(90 20 3 ))sinh( ))

Eκ β γ β β β γ β β β γ β β β β β γ γ β γ
β γ γ β γ γ γ β β β β γ γ β γ γ

β γ γ γ β

= − + − − + − + − + +

+ − − − + − + − + + −

− − +  
Moreover, when c is very large, we have γ → ∞ , the expression for the drag force D reduces as 

( )
( )

1

3

2

cosh( ) sinh( )
12

3 2 cosh( ) 3sinh( )

k
D Uκ β β β β

πµ
β β β β∞

 − =
 + −
 

                
(28) 

for the translation of an isolated porous sphere in an unbounded fluid. The expression conform with the physics of 
flow as it shows that the magnitude of drag force on the particle decreases on increasing radius of the outer cavity 
sphere and is least for unbounded medium. In addition, if radius of particle is small so that its forth order can be 
neglected in the expression for the magnitude of drag force 1Dκ  is approximated as  

                                                                   
1 34D U kκ πµ β∞ =                                                                                        (29) 

This shows that under above limitations, the drag increases cubically on increasing radius of the inner particle.  
 

• If we have impermeability condition i.e. 0k → , in the expression (27)for the drag force, the results conform with 
the physics of flow due solid particle. Remember that β  is function of permeabilityk .  Now, the drag force 0kD∞  

becomes   0 6kD Ubπµ∞ =                                                                                           (30) 

which is same as classical result for the translation of an isolated solid sphere of radiusb  in an unbounded fluid. 

Moreover, when k → ∞ , the expression (28) for the drag force reduces as 0kD ∞
∞ =                                 (31) 

 

(B) WALL EFFECTS 
• The wall correction factor K is ratio of the actual drag D  experienced by the porous particle in the concentric 

spherical cavity and the drag D∞  on the porous particle in an infinite expanse of fluid. Observe that 1K =  as 

/ 0β γ =  and 1 K≤  as0 / 1β γ< ≤ . The presence of the cavity wall always enhances the hydrodynamic drag on the 

composite sphere since the fluid flow vanishes at the wall as required by no slip boundary conditions appeared in 
eq.(14). 

• When 1κ = 1 2( )k k k= =  (permeability of core and surface layer of composite sphere are equal), the expression for 

the wall correction factor of a composite sphere (porous core)K  reduces for the wall correction factor 1Kκ  of an 
isolated porous sphere in a spherical cavity  

1 1 1/K D Dκ κ κ
∞=

                                                     (32)  

where 1Dκ and 1Dκ
∞ are given in expressions (27) and (28). 

• When 0k =  in above case we get the translation of a solid sphere in a spherical cavity. 
 

GENERAL CASES OF THE WALL CORRECTION FACTOR 
 

We now examine the some general cases of the wall correction factor K.   This depends upon /β γ also. The ratio 
/β γ  ranges from 0 (when radius of outer cavity sphere tends to infinity i.e.γ → ∞ ) to 1 (when no cavity). So this 

ratio reflects the extent of closeness between the particle and cavity wall. Figs (2-8) depict the motion of translating 
composite sphere (porous core) in a concentric spherical cavity. These Figs are drawn for describing the relationship 
between the wall correction factorK  and radii of spheres for various values of permeabilities.  
 

In Figs (2-7), is plotted for different cases forβ  and /α β , as a function of /β γ  (on horizontal axis) over the entire 
ranges of the separation and some values between 0 to 1of the parameter/α β . Fig. (2) describes the relationship 
between the wall correction factor K (on vertical axis) and ratio /β γ  (on horizontal axis) keeping 1β = fix

/ 0.2α β = Observe that six curves in this fig are characterized for six values of κ. In the Fig., it is evident that value 
of K increases on increasing/β γ . Further, it may be interesting to observe that when 1 2k k>  i.e. when 1κ > , the 

curve for greater vales of κ are above the curve for lesser values (shows that K increases with the increasing values of 
κ when 1κ > .), however, when1 2k k<  i.e. when 1κ <  the curve for greater vales of κ are below the curve for lesser 
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values. (shows that K decreases with the increasing values of κ when 1κ < ).Observe that cases for κ = 0.9 and 0.1, 

the curves are much closed, so that approximately coincident. Fig. (3) is similar as Fig. (2) except the value of β
which is now 4 (instead of 1 as in fig. 2) Further, it may be interesting to observe that the slope of curve in fig 3 are 
greater than the slope of curves in fig 2. So increment in β also increases the value of K. Now the curve for κ = 
0.05 and 0.1, are very much closed. The fig. 4-8 are succession of the above but the pattern have some peculiarities, 
e.g. in fig. 4 it may be interesting to observe that the curve for κ =2 lies between curves forκ =0.9 and κ =0.1. In 

fig. 5 the curve for κ =0.9 intersect to the curves κ =0.05 and κ =0.1 at /α β  = 0.8475 and 0.8805 respectively. In 

fig. 6 the curve for κ =10 is intersecting to the curves κ = 0.1 at /α β =0.456. In fig. 7 curve for κ =5 is intersecting 

to the curves κ =0.05 and 0.1 at /α β =0.6004 and 0.6344and curve for κ =0.9 is intersecting to the curves κ =2 

/α β =0.7646 and in this Fig. curve for κ = 10 is not analysed here as K is very large in amplitude showing 

fluctuation about initial line K.  
 

 
Fig.2 K versus β/γ for α/β=0.2 and β =1 and six values of κ 

 

 
Fig. 3 K versus β/γ for α/β=0.2 and β =4 and six values of κ 

 

 
Fig.4. K versus β/γ for α/β=0.5 and β =1 and six values of κ 
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Fig.5. K versus β/γ for α/β=0.5 and β =4 and six values of κ 

 

 
Fig.6. K versus β/γ for α/β=0.9 and β =1 and six values of κ 

 
Fig.7 K versus β/γ for α/β=0.9 and β =4 and five values of κ 

 

 
Fig.8 K versus β/γ for α/β=0.9 and β =4 and κ=9.8938688 
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In fig. 7 various curves show that when permeability of composite sphere core is less than permeability of shell of 
composite sphere (κ <1) , the wall correction factor increases on decreasing κ. However when permeability of 
composite sphere core is greater than permeability of shell of composite sphere (1<κ <9.8938688 approx.), the wall 
correction factor increases with increasing κ. In Fig. 8 , it may be observe that the wall correction factor K for κ 
=9.89387 initially increases with maxima at the point /β γ =0.972 (approx). For /β γ >0.972. The wall correction 
factor decreases and had been negative value for 0.9748< /β γ <0.9778(approx). The negative K is caused by the 
high permeability produced by porous core of the composite sphere with respect to of porous shell of the composite 
sphere. Case / 0α β = (similar as case κ =1 or / 1α β =  ) provides the results for simple porous particle that is 
discussed by Keh and Chou [3] and Khe and Lu [4], so we do not discuss here. 

 

CONCLUSION 
 

An analytic solution of the governing equations for the problem of the motion of a composite sphere in a spherical 
cavity filled with an incompressible Newtonian fluid has been obtained. Brinkman’s model is used in porous region 
and Stokes’ equations in the liquid region to analyze the problem. An expression for the hydrodynamic drag on the 
composite sphere in a spherical cavity is obtained. The wall effect is computed and presented the whole range of 
influences of the considered porous parameter from the limiting case of nearly porous sphere to solid sphere by 
Fig.s. It has been found that, the wall correction factor of the composite sphere is increasing function of separation 
parameter (ratio of radius of composite sphere to spherical cavity). The analysis assumes that composite sphere and 
its core are non deformable. We believe that our results provide useful insights into the actual phenomena of the 
motion of  a composite sphere in a spherical cavity/container, also these results are more realistic to pore geometries 
for the spherical cavity and wall effects of the cavity wall on this motion can be significant in appropriate situations. 
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Appendix  
 
Entities used above are as:

 
0 cosh( ) sinh( ),s α α κ κ α κ= − 5

1 7 13 03 ,s s s sκ= − 3 3
2 7 8 0 13 1 7(3 ) ,s s s s s s sα κ β= − + 3

3 0 86 ,s s sα=  
2 3 2 2 3 2 2 3 3 3

4 1 7 0 8 14 7 8 14 8 7 8 13 14( ( (3 sinh( )) (3 6 cosh( ) sinh( ) 6sinh( )) ) ( ) ),s s s s s s s s s s s s s sκ κ β κ α κα α κβ κβ κ α κα βκ κ β α= − + − − + + − −
2 3 2 2 3 2 2 3 3 3

5 1 7 0 8 15 7 8 15 8 7 8 13 15( ( (3 cosh( )) (3 6 sinh( ) cosh( ) 6cosh( )) ) ( ) ),s s s s s s s s s s s s s sκ κ β κ α κα α κβ κβ κ α κα βκ κ β α= − + − − + + − −
5 3 5 3 2 5 3 3 5 2 5 2 3 2 2 2 4 5 2 5 2

6 7 1 0 13 8

3 2 2 3 5 2 3 3 2 2 3 5 2
0 13

5 2 3 2 2

( (3 5 2 ) (3 ) (3 2 5 (18 )) 6(( ( 6

5 ( 9 )) (45( ) (3(7 2 ) ( ) (5 )) ) ) cosh( ( )) ( ( 21

5 ( 9

s s s s s s

s s

γκ κ β β β γ γ κ α κ β κ γ κ β γ κ α βκ β κ γ κ

β γ κ κ α β β α β β β α γ β γ κ κ α β α κ β κ

γ κ β γ κ

= − + + − + − + + − +

+ − + + − + − + − + − + −

+ + − + 3 4 5 3 2 5 2 5 3 2 5 4
0 13)) ( 45 (45 21 5 ) (6 5 ) ) ) sinh( ( ))))s sβ αβ β β γ γ κ αβ β β γ γ κ κ α β+ − + − + + + − − −

 

4
7 2 ,s κ= + 4

8 1 ,s κ= − + 9 4 5sinh( ) cosh( ),s s sβκ βκ= − 10 5 4sinh( ) cosh( ),s s sβκ βκ= − 11 4 5sinh( ) cosh( ),s s sακ ακ= −

12 5 4sinh( ) cosh( ),s s sακ ακ= − 2
13 sinh( / ),s α α κ= 14 cosh( ) sinh( ),s ακ ακ ακ= − 15 cosh( ) sinh( )s ακ ακ ακ= − +  

 


