
Available online www.ejaet.com 

European Journal of Advances in Engineering and Technology, 2015, 2(7): 56-61 

 

Research Article ISSN: 2394 - 658X 

 

56 
 

An Approach for Optimizing CPU and Memory Performance by 
Selection and Deactivation of Optional Components 

 

Jasneet Chawla and Ashima Singh 

 

Department of Computer Science Engineering, Thapar University, Patiala, India  
er.jasneetchawla@gmail.com 

_____________________________________________________________________________________________
 

ABSTRACT  
 

Component based software engineering has become a modern approach for software development. It is a 
multifaceted approach in complex scenarios that focuses on “develop once reuse multiple times” methodology. As 
per user requirements, the components from repository are selected and integrated to develop software. It helps 
developers to deliver high quality softwares within a less amount of time and cost with less effort. Component 
based softwares are based on modular approach that provides the benefit of easy scalability and flexibility of the 
software. But along with this advantage comes the disadvantages too. Adding more components may result in 
performance degradation in terms of responsiveness, throughput, bandwidth as well as incompatibility problems in 
terms of resource requirement. This research paper propose to identify the non participating components of a 
component based software like excessive graphics , unnecessary animations and other  optional components and 
deactivating them for that time to increase compatibility and optimize the system for best performance. By using 
the case study of Windows XP as reference, we successfully demonstrated that a component based software that 
has higher system requirements can run smoothly on a lower configured system by identifying and disabling the 
non participating sub-components. We successfully achieve up to 27.43% increase in performance by this method.  
 

Key words CBSE, COTS, CBD, Non Participating, System Compatibility 
_____________________________________________________________________________________ 
 

INTRODUCTION 
 

Component based software engineering (CBSE) has become a modern approach of software development that 
provides an optimal, efficient, economic and quick software development as per user requirements. This is 
achieved by using external components as well as in house built components. The main objective is to shorten the 
product development time, reduce the cost, and at the same time to improve the system quality drivers that includes 
Adaptability, Maintainability, Integration, Reliability, Flexibility and Interpretability [1]. The following Fig 1 
represents the component based software development process model that covers two major aspects Domain 
engineering and Component based development. Domain engineering constructs a domain model of application that 
is used during CBD for analysis of user requirements, a structural model which is used as an input to architectural 
design, and provides reusable components to developers for component based development. 
 

Component-Based Development (CBD) is an approach of developing software systems by reusing pre built 
components. CBSE is the best process model because it divides the application into two parallel activities i.e. 
component based development and domain engineering that helps to develop new components and reuse the old 
components from COTS for developing the new applications. So, as a result, CBSE process improves quality and 
productivity and hence reduces development schedule and effort [3]. The programmer uses already existing 
components to fulfil the desired function which is required in the new application. Let’s say, if a component is 
created by some developer which allows a user to "log in" then other programmer can use it in their applications for 
that functionality. 
 

Component based development involves the analysis of user requirements and enhancement of architecture that is 
suitable in accordance with the analysis model being designed for the application. Then the architecture is supplied 
with components that are either already existing or newly developed. If the component is available to be reused, it 
has to undergo component qualification (i.e. ensuring that the selected component executes all the desired 
functions), component adaptation (i.e. ensuring that constant ways for managing resources are used for every 
component and interfaces are realized in a constant way) takes place, however if not then component is engineered 
and then finally all the components are integrated and tested. 



Chawla and Singh                                                    Euro. J. Adv. Engg. Tech., 2015, 2(7):56-61      
______________________________________________________________________________ 

57 

It is a reuse-based approach to defining, implementing and composing loosely coupled independent components into 
systems. Modular approach of CBSE provides the properties such as scalability and flexibility that helps in easy 
extendibility of a functionality of software. But this leads to some performance and compatibility issues.  
 

 
Fig.1 Component Based Software Engineering Process Model [2] 

 

 
Fig.2 Component Based Development [3]  

 
LITERATURE SURVEY 

 

The wide spread literate found in the component based software engineering and its various optimization techniques. 
Gaoyan [4] described about the verification technique for CBSE through formal analysis as well as traditional 
Software Engineering. Summarizing most of the principle research done in this field is Gaoyan demonstrated an 
Automata-Theoretic approach for model checking. In this paper, the Model-checking Black-box Testing Algorithms 
or program   for Systems with Unspecified Components Here the he presented both LTL (linear time temporal logic) 
and CTL (computation tree logic) model-testing algorithms for the systems with unspecified software components. 
The LTL (resp. CTL) formula about the system, directly deduce the condition in terms of the communication 
graphs. The approach suggested by Egon et al [5] He says that the without verifying components and interaction it 
was nearly impossible to robust systems.  The Testing of such systems required combination of unit and integration 
tests, and must deal with the verifying contracts that enabled interaction of components. Osama et. al[6] identified 
various problems related to CBD like inadequate inclusive tools, less efficient methods to manage and collect the 
information required for selection of COTS for a specific application. He proposed an Optimal Performance Model 
(OPM) that made the selection of COTS for ERP systems in a more effective and efficient manner. OPM is based on 
several Standards of Quality. This information helps in attaining more useful and quality based ERP solutions 
(whether for implementing a new ERP or upgrading the existing one) that meet the business needs in a better way.  
 

Balsamo et al [7] presented a paper in which the issue of performance evaluation at early stages of SDLC was 
addressed. An approach that was based on Queuing network analysis evaluation of CBS was proposed. By using 
software specifications that are annotated in terms of UML use case, activity and deployment diagrams are used to 
analyse the performance bound. This is based on multi-class and multi-chain QN model.  The approach performed 
successful performance evaluation at architectural level. Kaur [8] addressed the need to recognise reusable 
components from a software and their reusability was determined using neural networks. The approach works in two 
steps. In First step, the code is parsed to calculate metric values:  Cyclometric Complexity Using Mc Cabe’s 
Measure, Halstead Software Science Indicator, Regularity Metric, Reuse-Frequency Metric and Coupling Metric. 



Chawla and Singh                                                    Euro. J. Adv. Engg. Tech., 2015, 2(7):56-61      
______________________________________________________________________________ 

58 

The generated metric values are supplied as input dataset for different neural networks to evaluate reusability. In 
second step, the neural network is designed and is used for evaluation. Firstly, the neural networks are trained using 
the training dataset. After training, the neural network is evaluated against the testing data and comparison is made 
on the basis of MAE (Mean Absolute Error), RMSE (Root Mean Squared Error) and Accuracy values of neural 
networks. Khan [9] Proposed an Improved Component Based Development Model that uses Expert Opinion 
Technique to overcome some of the problems associated with Traditional Component Based Development Models. 
Figure 3 shows an overview of various phases of ICBD Model and Figure 4 show a detailed view of ICBD Model. 
 

 
      Fig.3 An Overview of various Phases of ICBD Model [9]                         Fig.4 A Detailed View of ICBD Approach [9] 
 

Experts who were software engineers and those who have been working with component based software in many 
renowned organizations were sent the questionnaires and their responses were analyzed. Likert Scale was used by 
the experts. It was analyzed from the survey that the rating for ICBD Model was between nominal to high. 
Kahkipuro[10] presented a performance modelling framework to produce predictive performance models that can 
help in generating information related to performance at all stages of SDLC for development and maintenance of 
component based distributed systems. The framework describes a UML based notation for describing performance 
model and set of special techniques for the modelling of component based distributed systems. Diaconescu and 
Murphy [12] devised an approach AQuA for automating management of component based enterprise systems in 
which multiple component variants serving same functionality are categorised as a redundant group. At run time 
based on the execution environment, the selection of component from RG is done to optimize the system for best 
performance. Bertolino and Mirandola[13] devised an easy to use technique for prediction and analysis of 
performance of a component based system. For this purpose, a CB-SPE framework composing a methodology for 
software performance engineering and a supporting tool was proposed. The approach is divided into component 
layer and application layer. At component layer, developers model the schedulable resources demand of individual 
performance service in dependence to environment parameters. Parameteric performance evaluation of components 
is done in isolation. At Application layer, software architecture pre-selects the performance models and then 
composes them into architectural models. They model the flow of control using sequence diagrams. CB-SPE 
technique also includes the free available modelling tools, transformation tools and performance solver tools. 
 

Beydeda [14] proposed that it is very beneficial to use of CBSE based softwares for the gigantic software systems as 
it surely have benefits for cost cutting as well as faster delivery. However, CBSE complexity remains an issue in 
software engineering. The user of a component was generally found a problem with the information’s that is 
necessary is not available in general as it is black box and having different vendor make. In absence of adequate 
information distinguishes testing of components from other software entities that is called as non-component-based 
development. The author gave an overview of testable bean approach, built in testing approach and STECC 
approaches to testing component.  This method described can simplified as component user's test insofar that the 
component user might not need to create test cases for testing.  



Chawla and Singh                                                    Euro. J. Adv. Engg. Tech., 2015, 2(7):56-61      
______________________________________________________________________________ 

59 

Zheng et al [15] demonstrated that software yield was often configured with commercial-off-the-shelf (COTS) 
components. Whenever the new releases of these components were made accessible for incorporation and testing, 
source code was frequently not specified. There are wide regression test selections processes are developed and have 
been exposed to be cost efficient. However, the majority of these test selection techniques depends upon the access 
to source code for change detection. Based on their earlier work, it was studied the solution to regression testing 
COTS-based applications that include the mechanism of dynamic link library (DLL) files. They developed the 
Integrated - Black- box Approach for Component Change Identification (I- BACCI) technique that aims regression 
tests for component based application programs based upon static binary code analysis. The possibility case study 
was conducted at ABB on the CBSE software products written in some C/C++ language to demonstrate the 
efficiencies of the I-BACCI. As a results of the case study specify this process could cut the requisite number of 
regression tests by as much as 100 percentages. They propose that software crop were often configured with 
commercial-off- the-shelf (COTS) components. When new releases of these components were made available for 
incorporation and testing, source code was frequently not given. Different regression test selection techniques have 
been developed that is cost effective. However, the most of these test selection methods rely on access to source 
code for transform recognition. The whole work, were studying the solution to regression testing COTS-based 
programs that integrate components of dynamic link library (DLL) files.  Navneet et al [16] introduced that rapid 
and quick development of software’s can be made possible by means of CBSE. In CBSE, the software product was 
built by combining different techniques of on hand software from diverse suppliers or vendors. By means of this 
technique, cost and time of the software package reduced significantly. However in the testing stage there are many 
challenges for a software tester, due to limited access to the source code of the reusable component of the software 
product. The component meta-data could be used to join extra information with the components to facilitating of 
CBSE based software testing. The Black box testing was used as in this method the code of the component was not 
available. Generally, a component has a concealed interface and a tester is not able to put input values in it until its 
interface was not finished. The challenges in component based testing by use of metadata method for black box 
testing would be used when component’s interface not exists. Here they demonstrated the techniques that how the 
metadata could be used in black box testing.   

 

PROBLEM STATEMENT 
 

Modular approach of Component based software engineering has advantages of adding and removing and updating 
system components as per user requirements. It makes system more efficient towards problem solving.  But adding 
more and more components have some side drawbacks too. It degrades the system performance measured in terms 
of system response time, throughput and also degrades the system compatibility measured in terms of system 
resources. This overall degrades gradually the components based softwares performance for system with constant 
configuration. 
 

As software versions are upgrading very rapidly with changing business requirements whereas the hardware 
components of a system almost remains constant that becomes incompatible in due course of time which is a major 
problem.We propose to indentify and detect the non participating components viz. 
a) Excessive Graphics 
b) Unnecessary animations  
c) Other non required subcomponents 
And deactivate them for that particular time. This will optimize the system for best performance. Thus the software 
will be able to run even on lower configured systems efficiently.  

 

OBJECTIVE OF RESEARCH 
The principal objective of this research includes 
a) To Study and examine the existing Component Based Software Development for their performance and    

compatibilities. 
b) To propose an approach to enhance the performance and compatibility of component based system. 
c) To validate the proposed approach using a case study. 

 

RESEARCH METHODOLOGY CASE STUDY 
 

As Microsoft windows XP is widely available and accessible for common people therefore we adopt it as a media of 
Case study.  

Table -1 

Memory Consumption 
When all animations are enable 2.69 GB 
When all animations are disable 2.64 GB 

Difference 0.05 GB 
Percentage Increase (0.05/2.69)*100=1.85% 

 

Table-2 
CPU Utilization 

With full Animation 100% 

With Reduced Animation 47% 

Difference 53% 
 

Overall Increased Performance Index=(1.85+53)/2=27.43% 
Thus we enhanced the Performance of the system by keeping disable the optional components.  



Chawla and Singh                                                    Euro. J. Adv. Engg. Tech., 2015, 2(7):56-61      
______________________________________________________________________________ 

60 

 

 
 

Fig.5 In case of enabling all the non functional sub component Fig.6 Disabling all non functional sub components 
 

 
 

Fig.7 Performance (In case of enabling all non participating sub components) 
 

 
 

Fig.8 Performance (In case of disabling all non functional sub components) 



Chawla and Singh                                                    Euro. J. Adv. Engg. Tech., 2015, 2(7):56-61      
______________________________________________________________________________ 

61 

CONCLUSION 
 

We successfully demonstrated that a component based software that has higher system requirements can run 
smoothly on a lower configured system by identifying, selecting and disabling the non participating and non 
required functional components. This results in a better resource management. We successfully achieved up to 
27.43% increase in performance by this method.   

 

The future work aims to develop an application or an independent component that detects and identifies the optional 
i.e. non participating and non required functional components automatically and deactivates them for a period of 
time to enhance the performance of the system and to increase compatibility among components.  
 
 

REFERENCES 
 

[1] MRV Chaudran, Component Based Software Engineering, Leiden Institute for Advanced Computer Science, 
www.win.tue.nl/~wstomv/edu/2ii45/.../Intro_CBSE_SW-ARCH_13.pdf 
[2] Roger S Pressman, Software Engineering: A Practitioner's Approach, 5th edition, New York McGraw-Hill, 2001. 
[3] X Cai, MR Lyu, KF Wong and R Ko, Component-Based Software Engineering Technologies, Development 
Frameworks, and Quality Assurance Schemes, Proceedings of IEEE Seventh Asia-Pacific Conference on Software 
Engineering, 2000, 372-379. 
[4] Gaoyan Xie, Decompositional Verification of Component-based   Systems - A Hybrid Approach, Proceedings of 
the IEEE 19th International Conference on Automated Software Engineering [ASE’04], 2004, 414-417. 
[5] Egon Valentini, Gerhard Fliess and Edmund Haselwanter, A Framework for Efficient Contract-based Testing of 
Software Components, Proceedings of the IEEE 29th Annual International Computer Software and Applications 
Conference [COMPSAC’05], 2005, 219-222. 
[6] Muhammad Osama Khan, Ahmed Mateen, Ahsan Raza Sattar, Optimal Performance Model Investigation in 
Component-Based Software Engineering (CBSE), American Journal of Software Engineering and Applications, 
2013, 2(6), 141-149. 
[7] S Balsamo, M Marzolla and R Mirandola, Efficient Performance Models in Component-Based Software 
Engineering, 32nd IEEE EUROMICRO Conference on Software Engineering and Advanced Applications, 2006, 64-
71. 
[8] A Kaur, H Monga, and M Kaur, Performance Evaluation of Reusable Software Components. International 
Journal of Emerging Technology and Advanced Engineering, 2012, 2(4). 
[9] AI Khan, MM Alam and UA Khan, Empirical Study of an Improved Component Based Software Development 
Model using Expert Opinion Technique, International Journal of Information Technology and Computer Science 
(IJITCS), 2013, 5(8). 
[10] P Kahkipuro, UML-based Performance Modeling Framework for Component-Based Distributed Systems, In 
Performance Engineering, State of the Art and Current Trends, Springer-Verlag, 2001, 167-184. 
[11] A Diaconescu and J Murphy,  Automating the Performance Management of Component-Based Enterprise 
Systems through the Use of Redundancy, Proceedings of the 20th IEEE/ACM International Conference on 
Automated Software Engineering, 2005, 44-53. 
[12] A Bertolino and R Mirandola, CB-SPE Tool: Putting Component-Based Performance Engineering into Practice, 
Component-Based Software Engineering Springer Berlin Heidelberg, 2004, 233-248. 
[13] S Gobel, C Pohl, S Rottger and S Zschaler, The COMQUAD Component Model: Enabling Dynamic Selection 
Of Implementations by Weaving Non-Functional Aspects, Proceedings of the 3rd International Conference on 
Aspect-Oriented Software Development, 2004, 74-82. 
[14] Sami Beydeda, Research in Testing COTS Components Built-in Testing Approaches, IEEE 3rd ACS/IEEE 
Conference on Computer Systems and Applications, 2005, 101. 
[15] Jiang Zheng, Laurie Williams, Brian Robinson and Karen Smiley, Regression Test Selection for Black-box 
Dynamic Link Library Components, IEEE 2nd International Workshop on Incorporating COTS Software into 
Software Systems Tools and Techniques, 2007, 9. 
[16] Navneet Kaur and Ashima Singh, Generating More Reusable Components while Development A Technique, 
International Journal of Innovative Technology and Exploring Engineering, 2013, 2 (3). 


