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ABSTRACT 

Photovoltaic solar cells can be electrically characterized under several regimes including the dynamic frequency 

regime. With this regime, electrical quantities such as parallel capacitance, parallel resistance, and dynamic 

resistance are determined. In theory, these quantities depend on other parameters of the cell. In this study, the 

transition capacitance was studied as a function of temperature under forward bias in the dark. This transition 

capacitance forms with the diffusion capacitance the parallel capacitance of the cell. The study was done taking 

into account the temperature dependence of the intrinsic carrier concentration, the gap band, and the effective 

carrier mass. A discussion was made on the different existing models concerning the gap band and the intrinsic 

carrier concentration. For all the models, the gap energy decreases with increasing temperature while the intrinsic 

carrier concentration increases with increasing temperature. It was found that the transition capacitance increases 

with increasing bias voltage for a given temperature. It also increases with increasing temperature for a given 

voltage. 
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____________________________________________________________________________________ 
 

INTRODUCTION 

Photovoltaic solar cells are the most important components of a photovoltaic solar energy system. However, it is 

with these cells that light is transformed into electricity, since the discovery of the photoelectric effect and the 

manufacture of the first real photovoltaic solar cell within the Bell Company where an efficiency of 6% was quickly 

obtained. Since then, several photovoltaic solar cell technologies have emerged. Research continues to be carried 

out for a better understanding of these cells. This research is most often characterizations among which we can cite 

the electrical characterization which allows the determination of electrical quantities. However, the electrical 

characterization can be done in several regimes which are the static regime, the temporal regime, and the dynamic 

frequency regime. With the dynamic frequency regime, we can determine the series resistance, the parallel 

resistance, or the parallel capacitance. The determination of the electrical parameters in a dynamic frequency regime 

makes it possible to know the state of degradation of the solar cell. Parallel capacitance is the parallel association of 

transition capacitance, diffusion capacitance, and bulk capacitance. In theory, bulk capacitance tends to be 

neglected in front of transition capacitance and diffusion capacitance because it is of the order of 50pF/cm^2 for 

Silicon and very low compared to other values of the bulk capacitance of other solar cell technologies. In the 

literature, most of the works most often concern diffusion capacitance and transition capacitance. Jean-Paul Kleider 

et al reviewed the basic concepts of junction capacitance and the particularities related to very high-efficiency 

silicon heterojunction (SiHET) solar cells. By presenting both modeling and experimental results, they 

demonstrated that the conventional theory of transition capacitance based on the space charge depletion 

approximation, cannot reproduce the capacitance data obtained on SiHET cells. They found a discrepancy between 

the theoretical and experimental values obtained in the temperature and polarization dependence. They 
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demonstrated that this is not related to the amorphous nature of a-Si: H, but to the existence of a highly inverted c-

Si surface layer which necessitates the consideration of minority carriers in the analysis of the junction capacitance 

[1]. R. Anil Kumar and M. S. Suresh, have designed a technique for measuring the capacitance of a solar cell in the 

time domain. The measurements were carried out on GaAs/Ge and silicon BSFR solar cells at different cell voltages 

and are presented and compared with the equivalent charge capacitance derived from the impedance spectroscopy 

technique [2]. Hiranmoy Mandal and J. Nagaraju have measured the capacitance of GaAs/Ge and silicon BSFR 

solar cells at different temperatures under dark conditions. They used the triangular wave method which is a 

technique applicable in the frequency domain. With their method, they applied, on the solar cells, an external bias 

using a DC voltage and a small AC triangular wave signal of desired amplitude with variable frequencies. They 

then measured the resulting AC current and calculated the cell capacitance. They found that the GaAs/Ge solar cell 

showed only a transition capacitance throughout its operating voltage while the silicon solar cell (BSFR) showed 

both transition and diffusion capacitances [3]. In theory, the transition capacitance occurs following the separation 

of charges in the space charge region at the junction of a photovoltaic solar cell. The phenomenon forming at the 

junction leads some authors to call it junction capacitance. However, the transition capacitance is related to the 

space charge region and behaves similarly to the electrical capacitance of a capacitor. It is often studied in dynamic 

frequency regimes, especially during voltage variation. This paper presents the theoretical study of the transition 

capacity taking into account the temperature dependence of intrinsic carrier concentration and the band gap of 

Silicon. 

 

MODELING AND THEORETICAL ANALYSIS 

Mathematical model of transition capacity 

The transition capacity is given by: 

𝐶𝑇 = |
𝑑𝑄

𝑑𝑉𝑑
| =

𝐵

(𝑉0−𝑉𝑑)1/2     (1) 

Where B is a constant, 𝑉0 is the junction voltage, and 𝑉𝑑 the applied voltage. 

The values of the junction voltage 𝑉0 and the constant B can also be calculated from the doping levels in the n and 

p regions. 

𝑉0 =
𝑘𝑇

𝑞
𝑙𝑛 [

𝑁𝐴𝑁𝐷

𝑛𝑖
2 ]     (2) 

𝐵 = 𝐴√
𝑞𝑁𝜀0𝜀𝑟

2
       (3) 

1

𝑁
=

1

𝑁𝐴
+

1

𝑁𝐷
      (4) 

Where k is the Boltzmann constant, T is the temperature in K, q is the electron charge ((𝑞 = 1,6. 10−19 C), A is 

the surface area of the cell (𝐴 = 9. 10−2𝑚2), 𝜀0 is the permittivity of vacuum (𝜀0 = 8,854. 10−12𝐹/𝑀), 𝜀𝑟 is the 

relative permittivity of the material (𝜀𝑟 =11.9 for Silicon), 𝑁𝐴 is the doping concentration in the p-zone (𝑁𝐴 =
1. 1021. 𝑚−3  for Silicon), 𝑁𝐷 is the doping concentration in the n-zone (𝑁𝐷 = 1. 1025. 𝑚−3 for Silicon), 𝑛𝑖 is the 

intrinsic concentration of charge carriers in the solar cell base. 

Mathematical model of the intrinsic concentration of charge carriers 

The transition capacitance depends on the intrinsic density of charge carriers. The latter intrinsically depends on 

the cell temperature. In the literature, several values have been proposed. However, over time, the value of 𝑛𝑖 

changes, and authors such as Green, Sproul, Misiakos, and Altermatt have made changes to this value at 300K. 

Green, is one of the authors who revised the value of 𝑛𝑖. Referring to a critical analysis of resistivity 

measurements, he brought it from 1,45. 1010𝑐𝑚−3 to 1,08. 1010𝑐𝑚−3 [4]. 

Later, Sproul and colleagues refined this value using specially designed cells to measure 𝑛𝑖 and obtained a value 

of  1,00. 1010𝑐𝑚−3 [5]. 

A new value, 9,70. 109𝑐𝑚−3, was published shortly after by Misiakos, obtained from capacitance measurements 

on diodes biased under strong injection. However, in the literature authors reveal that the most frequently used 

value remains that proposed by Sproul [6].  

Sproul's value has recently been corrected by Altermatt to 9,65. 109𝑐𝑚−3, taking into account bandgap narrowing 

(BNG), which allowed Misiakos' and Sproul's values to be matched. The usually recommended value of 300 K is 

that obtained by Altermatt [7]. 

After this brief history on the real value of 𝑛𝑖 at 300K, we will present a re-evaluation of 𝑛𝑖, which depends on the 

temperature, while taking into account the narrowing of the band gap. In doing so, a selection of the band gap 

model will be made since the latter also depends on the temperature. A critical analysis of the underlying theory 

will be carried out. 

Mathematical aspect of the temperature dependence of 𝒏𝒊 

The following equation gives the expression of the intrinsic density of charge carriers as a function of temperature.  
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𝑛𝑖
2 = 𝑁𝐶(𝑇)𝑁𝑉(𝑇)𝑒𝑥𝑝 [

𝐸𝑔
0(𝑇)

𝑘𝑇
]    (6) 

Where: 𝑁𝐶  and 𝑁𝑉 are the effective densities of states in the conduction band and the valence band respectively, 

𝐸𝑔
0 is the intrinsic band gap of Silicon and k is the Boltzmann constant. 

The expressions of 𝑁𝐶  and 𝑁𝑉 are given by the following equations: 

𝑁𝐶 = 2 (
2𝜋𝑚𝑑𝑣

∗ 𝑘𝑇

ℎ2 )

3

2
     (7) 

𝑁𝑉 = 2 (
2𝜋𝑚𝑑𝑐

∗ 𝑘𝑇

ℎ2 )

3

2
     (8) 

Where 𝑚𝑑𝑐
∗  and 𝑚𝑑𝑣

∗  are the effective masses of the densities of states in the conduction band and the valence band 

respectively and h is Planck's constant. 

Using the physical constants recommended by Peter J. et al., equations (7) and (8) become: 

𝑁𝐶 = 4.83 × 1015 (
𝑚𝑑𝑐

∗

𝑚0
)

3

2
𝑇

3

2    (9) 

𝑁𝑉 = 4.83 × 1015 (
𝑚𝑑𝑣

∗

𝑚0
)

3

2
𝑇

3

2         (10) 

Where 𝑚0 is the electron mass. 

𝑚𝑑𝑐
∗  and 𝑚𝑑𝑣

∗  are obtained from the band diagram of Silicon in the first Brillouin zone. 

𝑚𝑑𝑐
∗ = 6

2

3(𝑚𝑡
∗2𝑚𝑙

∗)
1

3     (11) 

𝑚𝑑𝑣
∗ = (𝑚𝑙ℎ

∗
3

2 + 𝑚ℎℎ
∗

3

2 + (𝑚𝑠𝑜
∗ 𝑒𝑥𝑝 (

−∆

𝑘𝑇
))

3

2
)

2

3

    (12) 

Where 𝑚𝑡
∗ : is the transverse effective mass, 𝑚𝑙

∗ : is the longitudinal effective mass, 𝑚𝑙ℎ
∗  : is the effective mass of 

the light hole band, 𝑚ℎℎ
∗  : is the effective mass of the heavy hole band, 𝑚𝑠𝑜

∗  : is the effective mass of the split-off 

band, and ∆ : is the energy between this band and the two previous ones. 

It is possible to measure effective masses experimentally but at temperatures close to absolute zero. This 

requirement comes from the fact that the required cyclotron observations require very high charge carrier mobility 

[8]. 

The effective masses of the densities of states in the conduction band and in the valence band depend on the 

temperature. It is convenient to represent the temperature dependence of 𝑚𝑑𝑐
∗  and 𝑚𝑑𝑣

∗  in order to model  𝑁𝐶  and 

𝑁𝑉. This will allow us to have a new expression for 𝑛𝑖. 

𝑚𝑑𝑐
∗  has weak temperature dependence, unlike 𝑚𝑑𝑣

∗ , this allows us to assume that the theoretical temperature 

dependence of 𝑚𝑑𝑐
∗  follows from that of 𝑚𝑙

∗ and 𝑚𝑡
∗. Theoretically, 𝑚𝑙

∗  is independent of temperature and its value 

has been calculated with an accuracy of 4 K. Green proposed a model for the calculation of 𝑚𝑡
∗ given by equation 

(13). 

𝑚𝑙
∗ = 0,9163 × 𝑚0     (13) 

𝑚𝑡
∗ = 0,1905 × 𝑚0 (

𝐸𝑔
0(0)

𝐸𝑔
0(𝑇)

)    (14) 

Equation (13) can be rewritten as equation (14) 

A degree 3 extrapolation of the quotient of the second member of equation (11), made on the basis of the Passler 

model, allows us to have a simple expression of the ratio 
𝑚𝑙

∗

𝑚0
. 

(
𝑚𝑑𝑐

∗ (𝑇)

𝑚0
)

3

2
= 𝐴𝐶𝑇3 + 𝐵𝐶 𝑇2 + 𝐶𝐶𝑇3 + 𝐷𝐶    (16) 

Where  𝐴𝐶 = −4,609. 10−10, 𝐵𝐶 = −6,753. 10−7, 𝐶𝐶 = −1,312. 10−5 et 𝐷𝐶 = 1,094 

𝑚𝑑𝑣
∗  has a strong dependence on temperature. By making a polynomial approximation of degree 3 of equation (12) 

with Sproul data, we obtain a polynomial for 𝑚𝑑𝑣
∗ . 

(
𝑚𝑑𝑣

∗ (𝑇)

𝑚0
)

3

2
= 𝐴𝑉𝑇3 + 𝐵𝑉𝑇2 + 𝐶𝑉𝑇3 + 𝐷𝑉   (17) 

Where 𝐴𝑉 = 2,525. 10−9, 𝐵𝑉 = −4,689. 10−6, 𝐶𝑉 = −3,376. 10−3 et 𝐷𝑉 = 3,426. 10−1 

In the literature, all models of the intrinsic charge carrier density have the form given by the following equation: 

𝑛𝑖 = 𝐴𝑇𝐵𝑒𝑥𝑝 (
−𝐶

𝑇
)     (18) 

The coefficients A, B and C depend on the existing models. 

The challenge behind the expression of 𝑛𝑖 given by equation (17) is the choice of the model of the intrinsic band 

gap because, in the literature, there are many models of this band. 
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Band gap model 

The authors Bludau et al. and Macfarlane et al. [9, 10], were the first to carry out experimental work on the band 

gap. Currently, the models presented in the literature, and dealing with the band gap are made on the basis of the 

works of Bludau and Macfarlane. However, three models are most often used. His models are the works of 

Thurmond, Alex, and Pässler [11, 12, 13, 14]. 

The models of Thurmond and Alex follow the following equation: 

𝐸𝑔
0(𝑇) = 𝐸𝑔

0(0) −
∝𝑇2

𝑇+𝛽
     (19) 

Where α is expressed in 𝑒𝑉. 𝐾−1 and β in K. 

The two assumptions of equation (III-16) are that the energy gap must be inversely proportional to T at high 

temperature and proportional to T^2 at low temperature. The use of this equation is justified by the fact that it 

adequately represents the experimental results of M. B. Panish et al. 

The Pässler model follows the following equation: 

𝐸𝑔
0(𝑇) = 𝐸𝑔

0(0)−∝ 𝜃 [𝛾 +
3∆2

2
(1 +

𝜋2

3(1+∆2)
𝜒2 +

3∆2−1

4
𝜒3 +

8

3
𝜒4 + 𝜒6 − 1)

1

6
]  (20) 

Where: α represents the limit at the slope level when T tends to infinity, θ is the average temperature of the 

phonons, Δ is the degree of dispersion of the phonons, specific to the material, γ depends on Δ, θ, and T. Its 

expression is given by the following equation: 

𝛾 =
1−3𝛥2

𝑒𝑥𝑝(
𝛩

𝑇
)−1

      (21) 

 

RESULTS AND DISCUSSION 

Justification of the model chosen for the band gap 

Although the gap between the parameters of the three models is small, there is a difference between these three 

models (Figure 1). 
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Figure 1: Band gap model as a function of temperature 

 

However, to make a relevant analysis between these three models, one can consider the ratios between each model 

and the Pässler model as shown in Figure 2. 
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Figure 2: Band gap ratio of the models compared to the Passler model 
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In the Figure 2, the deviation does not exceed unity and is of the order of 0.7 at low temperature and 0.8 at high 

temperature. These observations can be misleading because the intrinsic charge carrier density depends on the 

band gap but, it may well not follow the same trends given by the models of this band. Let us analyze more closely 

the implication of the band gap models on the model of the intrinsic charge carrier density. The unrealism of the 

extremely wide dispersion regime implied by the Varshni model [15], and which has never been observed 

experimentally is the proof of the greater accuracy of the Pässler model. For low temperatures, we observe a 

tendency of E_g^0 (T) towards the asymptote Eg_lim (0)-αT, where α is the slope of this asymptote and Eg_lim 

(0) is the intersection of this asymptote with the y-axis at 0K. According to the Pässler model, the renormalization 

energy is defined as E_lim(0)- E_g^0 (T) and is equal to αΘ/2 in the Varshni model. This means that the 

parameter α and the renormalization energy are overestimated in the Thurmond and Alex models. However, in the 

further study of the junction capacitance and in the choice of the intrinsic carrier density model, we will use the 

Alex model for the gap band. There is no motivation behind this choice. 

We notice a decrease in the band gap as the temperature increases. This behavior is expected given the 

dependence of Eg on temperature with the Alex model. However, the band gap values for the Thurmond model 

and the Passler model have not been calculated. According to equation 19, the Thurmond and Alex models follow 

the same mathematical law in dependence on temperature. This suggests for the Thurmond model, a variation 

similar to that of the Alex model, the only difference will be in the values obtained. 
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Figure 3: Variation of the intrinsic concentration of charge carriers as a function of temperature for the Sproul 

model 
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Figure 4: Ratio of different models with the Sproul model 

 

Figure 3 shows that the intrinsic charge carrier density remains relatively low at low temperatures (250K to about 

320K). From 320K onwards, it begins to increase rapidly and exponentially. This rapid increase in density with 

temperature is expected, because the thermal generation of electron-hole pairs increases with temperature. 
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However, at high temperatures, there is more thermal energy available to excite electrons from the valence band to 

the conduction band. The analyses made in Figure 3 suggest that the Sproul model uses specific band gap 

parameters and constants that produce physically reasonable results. Figure 4 plots the ratios of the intrinsic charge 

carrier concentrations of the other models to the Sproul model as a function of temperature. It allows us to make a 

comparison of the relative accuracy of the different models. His analysis reveals among other things: a consistency 

of the models at different temperatures, a divergent behavior of the Misiakos model [16] and ratios close to unity 

except that of Misiakos. Concerning the consistency of the models, the graphs of the Green, Couderc, Madarasz, 

Humpheys and Hensel models [4,17, 18, 19, 20] are relatively constant and close to unity. Based on this 

observation, we can say that the predictions of the intrinsic density of charge carriers for these models are quite 

similar to that of the Sproul model over the entire temperature range. This reveals a consistency between these 

models which do not deviate much from that of Sproul. Concerning the divergent behavior of the Misiakos model, 

its curve increases significantly with temperature, exceeding 1.6 at 300K. This indicates that the Misiakos model 

predicts a much higher intrinsic concentration than the Sproul model at higher temperatures, suggesting that the 

Misiakos model is more sensitive to temperature. This increased sensitivity to temperature compared to other 

models may be due to the model parameters. The mathematical model of the intrinsic charge carrier density sheds 

light on the temperature dependence of the transition capacitance. This will allow further analysis of the variation of 

the transition capacitance with respect to temperature. Figure 5 shows the variation of the transition capacitance as a 

function of the applied voltage for a temperature of 300K. 
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Figure 5: Variation of the transition capacitance Ct as a function of the applied voltage 

 

In Figure 6, it is clear that the curve increases rapidly as the voltage increases. This simply indicates a significant 

change in the transition capacitance at higher voltages. The bias voltage creates a potential difference that is applied 

to the depletion region. This voltage brings a change to the height of the potential barrier that gradually decreases as 

this bias voltage increases. For a dynamic analysis and with respect to the photovoltaic solar cell, the transition 

capacitance plays a role in the cell's response to a voltage change. For a forward-biased solar cell, the generated 

charge carriers are separated by the junction, which reacts according to the voltage. Thus, the transition capacitance 

influences the speed at which the junction can react to voltage changes [21]. Although this effect is noticeable in 

high-frequency devices, its impact is less significant in a solar cell, where the priority is the efficient collection of 

charges generated by light. Basically, the relationship between junction capacitance and bias voltage can be 

explained by several factors. First, there is the doping of the semiconductor in terms of dopant concentration and 

dopant type: the dopant concentration influences the width of the space charge region. However, for an applied 

voltage, high doping can reduce the width of this region. Second, there is the nature of the semiconductor material 

in terms of its band gap: for an applied bias voltage, a material with a wider band gap will have a different space 

charge region width. Finally, there is the presence of defects and impurities in the fabrication of the semiconductor 

material: defects tend to trap charge carriers, thus changing their distributions in this region. Impurities, on the other 

hand, tend to introduce additional energy levels into the band gap. This affects the recombination and generation of 

charge carriers. The study of the influence of temperature on semiconductors allows us to better understand the 

behavior of charge carriers when the temperature changes. This also allows us to better understand their properties. 

Since the junction capacitance is linked to the storage of carriers in the space charge region, it is obvious that 

temperature has an influence on this capacitance. Although the junction capacitance predominates at low voltage, in 

this section, we present the results of the calculations as a function of temperature over a wide excitation voltage 

range (0.2 Volts-0.8 Volts) (Figure 6). 
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Figure 6: Variation of transition capacitance as a function of temperature for different bias voltages 

 

In Figure 6, it is observed that for an applied voltage, the values of the transition capacitance increase with 

increasing temperature. This variation is related to the concentration of charge carriers at two levels. First, the 

concentration of free charge carriers in the cell is affected by temperature. However, at low temperatures, there is 

not enough thermal energy to excite a large number of electrons from the valence band to the conduction band. This 

results in a decrease in the concentration of charge carriers, thus leading to a decrease in the width of the space 

charge region. It should be noted that a low temperature of the solar cell, which is made of doped semiconductors, 

promotes a reduction in collision and recombination [21]. Second, the variation can also be due to the influence of 

the band gap width on the intrinsic concentration of charge carriers. However, the energy of the latter is reduced as 

the temperature increases [4]. This leads to an exponential increase in the intrinsic ni concentration which at the 

same time increases the concentration of minority charge carriers. This increase in the concentration of minority 

charge carriers leads to an imbalance in the semiconductor. To restore the balance, the width of the space charge 

region narrows. This narrowing of the width of the space charge region thus leads to an increase in the transition 

capacity. It is clear that for a voltage applied to the photovoltaic solar cell, the decrease in temperature has 

consequences on the transition capacity. The latter quantifies the charges stored in the depletion zone. These 

consequences involve the storage of charges. This is caused by the concentration and reduced mobility of the charge 

carriers, thus limiting the amount of charges that can be stored in the junction. 

 

CONCLUSION 

The electrical parameters of solar cells in dynamic frequency regime are the subject of much research in practice 

and theory. This paper is a theoretical study of the junction capacitance with emphasis on mathematical models of 

parameters such as intrinsic carrier concentration and gap. Under the influence of temperature and forward bias 

voltage, the intrinsic carrier concentration is found to be temperature dependent as well as the gap. The transition 

capacitance is dependent on both the transition voltage and temperature. It increases with increasing voltage on the 

one hand and with increasing temperature on the other hand. Its increase with increasing bias voltage is due to the 

doping of the semiconductor with respect to dopant concentration and dopant type, the nature of the semiconductor 

material with respect to its band gap, and the presence of defects and impurities in the fabrication of the 

semiconductor material. Compared to temperature, its increase is due to the concentration of free charge carriers in 

the cell and the influence of the band gap width on the intrinsic concentration of charge carriers. 
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