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ABSTRACT 

This paper proposes to study unsteady natural convection in an enclosure bounded by a horizontal plane and a 

differentially heated elliptical wall. Using a conformal transformation, the curvilinear domain is reduced to a 

rectangular cross-section domain. The formulated transfer equations of the system such as: the equation of 

motion, heat and concentration are integrated using the finite volume method. The discretized equations are 

solved using the Thomas algorithm combined with a line-by-line iterative Gauss-Seidel scheme. The results of 

our study essentially concern the evolution of the temperature concentration and the current function to 

determine the behavior of the fluid in our domain by thermosolutal convection.Finally we will also look for the 

influence of the mass flow on the dynamic and thermal behavior of the fluid studied by setting the thermal 

Rayleigh number at 1.106 and taking for the mass Rayleigh number 0.100 and 1000.the results showed that the 

fulide is influenced by the mass flow for a mass Rayleigh number equal to 1000 

 

Key words: elliptic-cylindrical coordinate system, finite volume method, isotherms, relaxation, unsteady natural 

convection, broadcast, concentration 
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INTRODUCTION 

Fluid flows confined in closed enclosures and mechanically or thermally entrained have been the subject of 

numerous theoretical, experimental and numerical studies as they are present in nature as well as in many 

industrial applications. They are used, for example, in turbomachinery, in lubrication, in the cooling of 

electronic components, in thermal ovens, in the deposition of substances on surfaces. On the fundamental level, 

closed enclosures offer a privileged framework for the study of thermoconvective instabilities and the 

exploration of the Roads to Chaos. Since the work of G. De Vahl Davis [1], many works have been devoted to 

thermal convection in cavities with rectangular [2], [3], [4] or cylindrical [5], [6] sections. In this respect, T. 

Kuehn and J. Goldstein [7] have carried out a rich investigation of natural convection in closed enclosures and 

have presented numerical and experimental results for different configurations over a wide range of Rayleigh 

and Prandtl numbers and geometric parameters. Thanks to the development of numerical tools, the authors have 

focused on flows in enclosures bounded by increasingly complex curvilinear boundaries and in annular spaces 

[8], [9], [10], [11]. The effects of Rayleigh (or Grashof) and Prandtl numbers as well as geometric parameters 

(eccentricity, form factor, tilt) on the thermal and dynamic fields have been studied. In 1994 U-Ch Shin et al [7] 

and in 1999 Z. Kabdi et al. in 1999 [8] numerically studied the two-dimensional natural thermal convection in 

cylindrical lunules with horizontal axis filled with air or enclosing a porous medium. The transfer equations 

written in the two-cylinder coordinate system were solved using the control volume method and the power law 

developed by Patankar [7]. The influence of the system parameters, notably the inclination with respect to the 

horizontal plane, the form factor, the modified Grashof number is studied. The average and local values of the 

Nusselt numbers as well as the distributions of the isotherms and current function lines are presented and 
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discussed. The minimum heat transfer is obtained for tilt angles between 30 and 45. For large values of the 

Grashof number, the transfer is accelerated and secondary flows occur. More recently, M. L. Sow et al [9] and 

M. N. Koïta et al [10] have numerically studied the effects of Rayleigh number, eccentricity and tilt on natural 

thermal convection in an annular space bounded by two vertically eccentric spheres. They showed that when the 

Rayleigh number reaches the value of 10^7, the flow becomes multicellular characterised by a state of pre-

turbulence. They also showed that depending on the values of the eccentricity, the flow can change from a 

single-cell flow to a multi-cell flow. The common point from the mathematical modelling point of view of the 

works [8], [9], [10], [11] mentioned above is the use of conformal transformations which allows to reduce the 

physical domains to rectangular numerical domains. However, in these geometries, the poles, which are 

generally points of singularity, are located outside the study domain, and so the numerical study is facilitated. 

The natural convection in a domain delimited by a flat horizontal plate and a wall whose trace is a cylindrical 

half-ellipse has never, to our knowledge, been studied. The only case that resembles this geometrical 

configuration is the enclosure delimited by a flat wall and a cylindrical cap Z. Kabdi et al. in 1999 [3]. From a 

practical point of view, the cylindrical half-ellipse can be used as a deposition surface in thermally stable 

convection and it is interesting to study the uniform accessibility of such a surface. From a fundamental point of 

view it is to explore the thermoconvective instabilities in such a domain. This is why we propose in this paper to 

study the unsteady natural thermal convection in this closed enclosure in the elliptic-cylindrical coordinate 

system. One of the original features of our field of study, contrary to annular enclosures, is the presence of poles 

which are located on the plane surface 

 

DESCRIPTION OF THE PROBLEM IN PHYSICAL DOMAIN 

The physical domain in which we propose to study heat and momentum transfer within a fluid in an 

impermeable closed enclosure bounded by a half cylinder of equation 

 

(
𝑥

𝑎𝑥
)
2

+ (
𝑦

𝑎𝑦
)
2

= 1  ;    𝑦 ≥ 0

∀ 𝑧 ∈ [−𝑙 ∶ +𝑙]
 

}       (1) 

 

and a flat horizontal plate of width (2.L) coinciding with the major axis of the ellipse and of depth (2𝑙) (Figure 

1a). In our study we place ourselves in the case where 𝑎𝑥 is the semi-major axis of the ellipse and we pose 

 𝑎𝑥 = 𝐿      
Initially the enclosure is filled with a fluid of density 𝜌0 in thermodynamic equilibrium at temperature  𝑇0 and 

thermally isolated from the external environment. The curvilinear boundary of the chamber is maintained at 

temperature  𝑇0. We will assume hereafter that the depth of the enclosure (2. 𝑙)is very large in front of the length 

of the major axis (2.L). 

 
Fig.1a Schematic of the physical domain 

 

 
Fig.1b Cross-section in the plane (z=0) of the physical domain 
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Although it is simpler to write the equations modelling the transfers in a Cartesian (𝑥, 𝑦)coordinate system, it is 

however more sensible to find a coordinate system in which the contours of our domain are constant coordinate 

surfaces. The shape of the curvilinear wall then led us to choose the elliptic-cylindrical coordinates  (𝜂, 𝜃)which 

seem, naturally, to be the best suited to the geometry considered. 

To generate the elliptic-cylindrical coordinates, we will use the following transformation 

 

𝑓(𝒵) = 𝑎. 𝑐ℎ(𝒵) = 𝑎. 𝑐ℎ(𝜂 + 𝑖. 𝜃)      (3) 

Hence  

 
𝑥 = 𝑎. 𝑐ℎ(𝜂). 𝑐𝑜𝑠(𝜃) 

𝑦 = 𝑎. 𝑠ℎ(𝜂). 𝑠𝑖𝑛(𝜃) 
 

}         (4) 

 

The (𝜂)constants are ellipses with large axes (2. 𝑎. 𝑐ℎ𝜂) and small axes (2. 𝑎. 𝑠ℎ𝜂) while the (𝜃) constants are 

hyperbolas with asymptotes 𝑦 = 𝑥. tan(𝜃) and 𝑦 = −𝑥. tan(𝜃).By translating the ellipses and hyperbolas along 

the horizontal axis (Oz), we then generate families of elliptical cylinders and hyperbolic sheets. 

The size and shape of the elliptical domain are fixed by the values of  𝜂 of the inner (𝜂 =0) and outer (𝜂 =𝜂𝑝 ) 

ellipses while the 𝜃 coordinate varies between 0 and π. The flat plate portion (𝑦 = 0 , ∀ 𝑧 ∈ [−𝑙 ∶ +𝑙]) is 

marked by  

{
 
 

 
 

𝜂 = 0     ∀ 𝜃 ∈ [0 ;  𝜋]         

𝜃 = 0   ∀ 𝜂 ∈ [0 ;  𝜂𝑝]              

𝑎𝑛𝑑
𝜃 = 𝜋    ∀ 𝜂 ∈ [0 ;  𝜂𝑝]          

 

                (5) 

Thus our curvilinear enclosure is transformed into a rectangular domain bounded by the coordinate lines 

(Figure2) 

𝜂 = 0  𝑒𝑡  𝜂 = 𝜂𝑝   ;   𝜃 = 0  𝑒𝑡  𝜃 = 𝜋  ;   𝑧 = −𝑙  𝑒𝑡 𝑧 = +𝑙 

 

 
Fig.2 Physical domain in the elliptic-cylindrical coordinate system. Section in the z=0 plane 

 

MATHEMATICAL FORMULATION 

From an instant 𝑇0the flat plate of the enclosure is heated to a constant temperature 𝑇𝑝 > 𝑇0. If the difference 

between the temperature of the fluid and that of the heated flat plate exceeds a certain threshold, the fluid then 

starts to move under the action of the non-uniformity of the density due to the temperature gradients in the 

domain. We propose to study the natural convection that will then arise in our enclosure under the following 

simplifying assumptions: 

As (2. 𝐿) ≪ (2. 𝑙)  then by placing ourselves very far from the vertical walls, we can consider that the transfers 

are plane and two-dimensional 

The characteristic velocity of the flow is very small compared to the adiabatic sound velocity and therefore the 

powers of the pressure forces and the viscosity forces dissipated as heat are neglected compared to the other 

contributions in the enthalpy equation. 

The fluid is transparent and the temperature differences are small enough that heat transfer by radiation can be 

neglected. 

We assume that variations in the density of the fluid are taken into account only in the driving term of the 

Navier-Stokes equations and follow the following linear Boussinesq law 

 

𝜌 = 𝜌0[1 − 𝛽𝑇(𝑇 − 𝑇0) + 𝛽𝑐(𝐶 − 𝐶0)]     (6) 

Where 𝛽𝑇 = −
1

𝜌0
(
𝜕𝜌

𝜕𝑇
)
𝑐=𝑐𝑡𝑒

 𝑎𝑛𝑑    𝛽𝑐 = −
1

𝜌0
(
𝜕𝜌

𝜕𝑐
)

𝑇=𝑐𝑡𝑒
is the coefficient of thermal expansion. 
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In natural convection the pressure field is not very interesting, especially when the powers of the pressure forces 

are neglected. To eliminate the pressure term, a substitution equation will have to be used by applying the 

rotational operator to both members of the equation of motion written in velocity-pressure variables. Since the 

flow is assumed to be plane and two-dimensional then the vorticity  𝜔⃑⃑  and the potential vector 𝜓⃑   each have 

only one non-zero component which lies in the plane perpendicular to the flow plane. Therefore, positing 𝜔⃑⃑ =

𝜔. 𝑒𝑧   and  𝜓⃑ = 𝜓. 𝑒𝑧.Thus using the current-vorticity function formalism then the equations governing the 

transfers are respectively vorticity equation; stream function equation; mass equation and heat equation  
𝜕𝜔

𝜕𝑡
+ ∇⃑⃗⃑. (𝑣 . 𝜔 − 𝜐. ∇⃑⃗⃑𝜔) = −𝛽𝑇 . (∇⃗⃑⃑ 𝑇) ∧ 𝑔⃗              (7) 

 

∇⃑⃗⃑ . (−∇⃗⃑⃑ 𝜓) =  𝜔                        (8) 

 
𝜕𝑐𝑖

𝜕𝑡
+ ∇⃑⃗⃑. [𝑣 . 𝑐𝑖] = ∑ 𝛾𝑖𝑗 .

𝑟
𝑗=1 𝜑𝑗 −

1

𝜌
∇⃑⃗⃑. [𝒥(𝜌𝑖)]  + 𝑐𝑖 . (∇⃑⃗⃑. 𝑣 )  (9) 

 
𝜕𝑇

𝜕𝑡
+ ∇⃑⃗⃑. (𝑣 . 𝑇 − 𝛼. ∇⃑⃗⃑𝑇) = 0               (10) 

 

with  𝑣 , c, 𝜔, 𝜓 and 𝑇 the velocity, concentration, vorticity, current function and temperature fields. 𝜐 and 𝛼 

represent the kinematic viscosity coefficient and thermal diffusivity respectively. 

 

FORMULATION OF DIMENSIONLESS EQUATIONS IN CURVILINEAR COORDINATE SYSTEM 

Given the multiplicity of parameters involved in the set of equations of our mathematical model, it would be 

useful to find a technique to reduce them. To do so, we can agglomerate them in the form of adimensional 

groupings having a physical meaning and which allow, among other things obtain information about the 

solution before solving the problem, to optimize a possible experimental approach. 

By introducing the following reduced quantities 

 

𝑡∗ =
𝛼.𝑡

(𝑎)2
;  𝜓∗ =

𝜓

𝛼
 ;  𝜔∗ =

(𝑎)2.𝜔

𝛼
 ;  𝑇∗ =

𝑇−𝑇0

𝑇𝑝− 𝑇𝑎
  ; 𝐶 = 𝑐 − 𝑐0 

The equations for the dimensionless current function, motion and heat projected onto the coordinate axes are 

Dimensionless equation of the current function 

−
1

ℎ∗2 (
𝜕2𝜓∗

𝜕𝜂2 +
𝜕2𝜓∗

𝜕𝜃2 ) =  𝜔∗       (11) 

 
𝜕𝜔∗

𝜕𝑡∗ +
1

ℎ∗2 {
𝜕

𝜕𝜂
(ℎ∗𝑣𝜂

∗𝜔∗  − 𝑃𝑟.
𝜕𝜔∗

𝜕𝜂
) +

𝜕

𝜕𝜃
(ℎ∗𝑣𝜃

∗  𝜔∗ − 𝑃𝑟.
𝜕𝜔∗

𝜕𝜃
)} =

1

ℎ∗2 {𝐵𝑜. (
𝜕𝑇∗

𝜕𝜂
. 𝑠ℎ𝜂. 𝑐𝑜𝑠𝜃 −

𝜕𝑇∗

𝜕𝜃
. 𝑐ℎ𝜂. 𝑠𝑖𝑛𝜃)}(12) 

 
𝜕𝐶

𝜕𝑡∗ + ∇⃗⃑⃑∗. (𝑣 . 𝐶 −
1

𝐿𝑒
. ∇⃑⃗⃑∗𝐶) = 0     (17) 

 
𝜕𝑇∗

𝜕𝑡∗ +
1

ℎ∗2 {
𝜕

𝜕𝜂
(ℎ∗𝑣𝜂

∗  −
𝜕𝑇∗

𝜕𝜂
) +

𝜕

𝜕𝜃
(ℎ∗𝑣𝜃

∗𝑇∗ −
𝜕𝑇∗

𝜕𝜃
)} = 0    (13) 

 

ℎ = √𝑔𝑖𝑖  = 𝑎. √(𝑐ℎ𝜂)2 − (𝑐𝑜𝑠𝜃)2              

𝑃𝑟 =
𝜐

𝛼
  𝑎𝑛𝑑    𝐵𝑜 = 𝑅𝑎. 𝑃𝑟 =

𝛽. 𝑔. (𝑇𝑝 − 𝑇𝑎). 𝑎
3

𝛼2
 𝑎𝑛𝑑 

where Ra is the Rayleigh number. 

We complete this system of equations with the following initial and boundary conditions 

• Initial condition 

𝜓∗(𝜂, 𝜃 ; 𝑡∗ = 0) = 𝜔∗(𝜂, 𝜃 ; 𝑡∗ = 0) =  𝐶(𝜂, 𝜃 ) = 𝑇∗(𝜂, 𝜃 ; 𝑡∗ = 0) =  0        (14) 

 

• On the elliptical wall: 𝜂 = 𝜂𝑝      ;  ∀𝜃 ∈   ]0  ;  π[ 

𝜓∗(𝜂𝑝, 𝜃; 𝑡∗) = 𝑇∗(𝜂𝑝, 𝜃 ; 𝑡∗) =
𝜕𝐶

𝜕𝜂
= 0 ; 𝜔∗(𝜂𝑝, 𝜃; 𝑡∗) = −

1

ℎ∗2

𝜕2𝜓∗

𝜕𝜂2  ;   (15) 

 

• On the part of the flat plate: 𝜂 = 0    ;  ∀𝜃 ∈   ]0  ;  π[  

𝜓∗(0, 𝜃 ; 𝑡∗) = 0; 𝑇∗(0, 𝜃 ; 𝑡∗) = 1; 
𝜕𝐶

𝜕𝜂
= ±𝐷𝑎. ℎ∗. 𝐶; 𝜔∗(0, 𝜃 ; 𝑡∗) = −

1

ℎ∗2

𝜕2𝜓∗

𝜕𝜂2    (16) 

 

• On the part of vertical plate:  
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For  𝜃 = 0 ;  ∀𝜂 ∈ ]0 ; 𝜂𝑝[ 

𝜓∗(𝜂, 0; 𝑡∗) =
𝜕𝐶

𝜕𝜃
= 0 ; 𝜔∗(𝜂, 0; 𝑡∗) = −

1

ℎ∗2

𝜕2𝜓∗

𝜕𝜃2  et 𝑇∗(𝜂, 0; 𝑡∗) = 1    (17) 

 

For 𝜃 = 𝜋  ;  ∀𝜂 ∈  ]0 ; 𝜂𝑝[ 

𝜓∗(𝜂, 𝜋 ; 𝑡∗) =  
𝜕𝐶

𝜕𝜃
= 0 ;𝜔∗(𝜂, 𝜋 ; 𝑡∗) = −

1

ℎ∗2

𝜕2𝜓∗

𝜕𝜃2  et  𝑇∗(𝜂, 𝜋 ; 𝑡∗) = 1    (18) 

 

Dimensionless connection conditions at points A, B, C and D  

These points present discontinuities of the first kind, which forces us to approximate certain quantities at these 

points. We will have  

• To the point 𝑨(𝜼 = 𝟎 , 𝜽 = 𝟎) 
𝜕𝜔∗

𝜕𝜂
⌋
𝜃=0

= −
𝜕𝜔∗

𝜕𝜃
⌋
𝜂=0

  ;    
𝜕𝐶

𝜕𝜂
⌋
𝜂=0

=
𝜕𝐶

𝜕𝜃
⌋
𝜃=0

    (19) 

 

• To the point 𝑫(𝜼 = 𝟎 , 𝜽 = 𝝅) 
𝜕𝜔∗

𝜕𝜂
⌋
𝜃=𝜋

=
𝜕𝜔∗

𝜕𝜃
⌋
𝜂=0

   ;        
𝜕𝐶

𝜕𝜂
⌋
𝜂=0

=
𝜕𝐶

𝜕𝜃
⌋
𝜃=0

    (20) 

 

• To the point 𝑩(𝜼 = 𝜼𝒑 , 𝜽 = 𝟎) 
𝜕𝑇∗

𝜕𝜃
⌋
𝜂=𝜂𝑝

=
𝜕𝑇∗

𝜕𝜂
⌋
𝜃=0

       (21) 

 

𝜓∗(𝜂 = 𝜂𝑝, 𝜃 = 0 ; 𝑡∗) =  𝜔∗(𝜂 = 𝜂𝑝, 𝜃 = 0 ; 𝑡∗) = 0 

 
𝜕𝐶

𝜕𝜃
⌋
𝜂=𝜂𝑝

=
𝜕𝐶

𝜕𝜂
⌋
𝜃=0

;   
𝜕𝜔∗

𝜕𝜂
⌋
𝜂=𝜂𝑝

=
𝜕𝜔∗

𝜕𝜃
⌋
𝜃=0

      (22) 

 

• To the point 𝑪(𝜼 = 𝜼𝒑 , 𝜽 = 𝝅)  
𝜕𝑇∗

𝜕𝜃
⌋
𝜂=𝜂𝑝

= −
𝜕𝑇∗

𝜕𝜂
⌋
𝜃=𝜋

           (23) 

𝜓∗(𝜂 = 𝜂𝑝, 𝜃 = 𝜋 ; 𝑡∗) =  𝜔∗(𝜂 = 𝜂𝑝, 𝜃 = 𝜋 ; 𝑡∗) = 0 
𝜕𝐶

𝜕𝜃
⌋
𝜂=𝜂𝑝

= −
𝜕𝐶

𝜕𝜂
⌋
𝜃=𝜋

;   
𝜕𝜔∗

𝜕𝜂
⌋
𝜂=𝜂𝑝

= −
𝜕𝜔∗

𝜕𝜃
⌋
𝜃=𝜋

   (24) 

 

  Relationships (23) and (24) reflect the continuity of vorticity and heat flux. 

 

NUMERICAL FORMULATION 

The continuous domain (D) is reduced to a discrete domain consisting of elementary volumes 𝛿𝒱𝑐 called 

"control volumes". In order to avoid some unrealistic solutions, a shifted constant-step mesh is used in which the 

scalar fields are computed at the centre of the control volume P and the velocity components are evaluated at the 

centres of the facets marked by the indices e,n,w and s of the control volume (see Figures 3. b). 

 

 
Fig.3a Diagram of the mesh in the (x, y) plane 
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Fig.3b Mesh diagram in the (𝜂, 𝜃) plane 

 

The equations are discretised using the Power Law Scheme [Patankar S. K., 1981; Perron S., 2001; Versteeg H. 

K., Malalasekera W., 1995]. The components of the velocities at the facets of the generic control volume are 

expressed in terms of the first derivatives of the current function whose values are calculated only at the centres 

of the control volumes. The Neumann-type boundary conditions are approximated by a decentred scheme of 

order two 

An implicit two-layer Euler-type scheme with constant time step is used to approximate the time derivatives of 

the quantities. The resulting systems of equations are solved by an iterative over-relaxation method. 

The process is stopped when the following convergence criterion is met 

 

∑ |(ℱ̅𝑖)
𝑘+1 − (ℱ̅𝑖)

𝑘|𝑖=𝑖𝑚
𝑖=1

∑ |(ℱ̅𝑖)
𝑘+1|𝑖=𝑖𝑚

𝑖=1

≤ 𝜀 ℱ̅           (25) 

 

In addition to the criterion of convergence of the iterative processes, we must also define a criterion for stopping 

the calculation program. We stop the calculations when, at large times, the variations of our functions between 

two consecutive instants are very small. In these conditions we take as stopping criterion 

 

𝑚𝑖𝑛{𝑒 𝜃; 𝑒 𝐶; 𝑒 𝜔 ;  𝑒 𝜓} ≤ 𝐶𝑟 ℱ̅              (26) 

With 

𝑒 ℱ̅ =
∑ |(ℱ̅𝑖)

𝑛+1 − (ℱ̅𝑖)
𝑛|𝑖=𝑖𝑚

𝑖=1

∑ |(ℱ̅𝑖)
𝑛+1|𝑖=𝑖𝑚

𝑖=1

                (27) 

 

RESULTS AND DISCUSSION 

The following results are relative to a Prandtl number of 0.7 et un nombre de Rayleigh thermique fixe a 1.106 

.nous allons chercher linfluence du flux massique sur le comportement dynamique et thermique du fluide en 

faisant varier le nombre de Rayleigh massique comme suit:Ram=0 Ram=100 et Ram=1000 

 

Table 1: Values of the numerical parameters of the functions 

 Values of the numerical parameters of the functions 

Current function concentration vorticity Temperature 

𝜀 ℱ̅ 0.005 0,00001 0.0004 0.005 

Relaxation factor 0.79 0,1 0.078 0.78 

 

In all that follows we have taken 𝜂𝑝 = 1 

 

a. Thermal field, current lines and iso concentration at variable times 𝑹𝒂𝒕 = 𝟏. 𝟏𝟎+𝟔 and 𝑹𝒂𝒎 = 𝟎 

 

Figures (4) represent the isotherms, iso-concentrations and streamlines for different ones for 𝑅𝑎𝑡 = 1. 10+6and 

Ram=0. We note that these figures show that the regime of flow is two-celled. The cell rotates in the 

trigonometric direction and on the right side it rotates in the opposite direction (the particles of the fluid move 

upwards under the action of the forces of Archimedes' buoyancy). 
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Fig.4 Isoconcentration (a), streamlines (b) and isotherms (c) at different times for Rat=1. 10+6  and Ram=0 

 

a. Thermal field, current lines and iso concentration at variable times for 𝑹𝒂𝒕 = 𝟏. 𝟏𝟎+𝟔 and 

𝑹𝒂𝒎 =100,1000 

 

Figure 5 shows that the isotherms and iso-concentrations are almost parallel and concentric curves which 

denotes that for a low mass Rayleigh number Ram=100, mass transport in space is essentially controlled by the 

diffusion process. Fluid streamlines organize into two cells that rotate very slowly in opposite directions.  

For Ram=1000, Figure 6 illustrates the fact that the isotherms and iso-concentrations transform and end up 

adopting the shape of a mushroom. We also note that, in this case, the distribution of temperatures and 

concentrations are different  

When the mass Rayleigh number becomes important, Ram=1000, figures 5 and 6 show that the isotherms and 

iso-concentrations are more confined near the walls and that in the middle of space the values of these iso lines 

are almost constants in the upper half of the latter. 
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Figure 5 shows that the isotherms and iso-concentrations are almost parallel and concentric curves which 

denotes that for a low mass Rayleigh number Ram=100, mass transport in space is essentially controlled by the 

diffusion process. Fluid streamlines organize into two cells that rotate very slowly in opposite directions.  

For Ram=1000, Figure 6 illustrates the fact that the isotherms and iso-concentrations transform and end up 

adopting the shape of a mushroom. We also note that, in this case, the distribution of temperatures and 

concentrations are different.  

When the mass Rayleigh number becomes important, Ram=1000, figures 5 and 6 show that the isotherms and 

iso-concentrations are more confined near the walls and that in the middle of space the values of these iso lines 

are almost constants in the upper half of the latter. 

 

 
Fig.5 Isoconcentration (a), streamlines (b) and isotherms (c) at different times for Rat=1. 10+6 and Ram=100 
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Fig.6 Isoconcentration (a), streamlines (b) and isotherms (c) at different times for Rat=1. 10+6 and Ram=1000 

 

Figures 4b, 5b and 6b show the streamlines for a form factor equal to 1 and for values of the mass Rayleigh 

number between 0 and 1000. According to these figures, the streamlines follow the shape of the front part of the 

plate, the flow not yet being disturbed. As the Reynolds number increases, the vorticity becomes more intense 

and moves closer to the bottom wall. This is simply explained by the fact of the importance of the fluid entry 

speed into the channel, the considerable narrowing of the channel at the level of the plate and obviously the 

adhesion of the fluid to the wall. Overall, the presence of the lower wall causes a disturbance of the flow in the 

channel. We represent in Figures 4c, 5c, 6c the curves which illustrate the isotherms for the same values of the 

thermal Rayleigh number, a heat flux of constant density having been imposed at the base of the lower wall. It 

can be noted that the greater the mass Rayleigh number, that is to say the higher the speed of the fluid, the more 

the heat is concentrated in the vicinity of the lower wall of the channel and in particular in the zone where the 

vortices reign. It should be noted that the heat flow injected at the base of the plate, the mass Rayleigh number 

does not influence the temperature distribution upstream of the obstacle because the heat transport takes place 

essentially by convection 
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CONCLUSION 

In this part, after having validated the calculation code, we analyzed the results, the phenomenon of natural 

Rayleigh-Bénard convection within a binary fluid in a closed impermeable and non-catalytic enclosure 

delimited by a half cylinder, heated by its lower wall. The analysis was carried out for three mass Rayleigh 

numbers (Ram = 0, Ram = 100 and Ram = 1000). However, it should be noted that the model used in this study 

is two-dimensional for laminar flow. As natural flows are mostly turbulent, it would be interesting to confirm 

these results using a three-dimensional numerical model, in the context of turbulence, which could provide a 

good understanding of the physical phenomenon linked to flow with deposition as a whole. the problem of 

deposit deserves to be studied more closely. This document is devoted to the study of the phenomenon of natural 

Rayleigh-Bénard convection within a binary fluid in a closed impermeable and non-catalytic enclosure 

delimited by a half-cylinder. Thus, the validity limit of the two-dimensional flow was discussed based on the 

Rayleigh number and the ratio of thermal conductivities. The results showed that the structure of the flow as 

well as the average heat transfer is strongly influenced by the ratio of thermal conductivities, in the diffusive 

regime as in the convective regime. A multiplicity of solutions has been proven in the convective regime and the 

local distributions of temperature, Nusselt number and heat flux depend significantly on it. 

 

NOMENCLATURE 

𝐶, Mass fraction of the species in the binary mixture 

𝐶𝑝 Specific heat capacity [ J. kg−1. K−1] 
𝐷, Molecular diffusion coefficient [ m2. s−1] 
𝑔 , Gravity field intensity [ N. kg−1 ] 

ℎMetric coefficient [m] 
𝑙Plate length  [m] 
𝐿Length of plate[m] 
𝑡, Dimensional time[s] 

𝑇, Binary fluid temperature[K] 

𝑇𝑖𝑚𝑝, ource temperature [K] 

𝑣𝜂,Component according to η of the speed vector [m . s⁻¹] 

𝑣𝜃 , Component according to θ of the speed vecto [m . s⁻¹] 
𝑣⃗, Barycentric vector of the binary fluid 

𝑥,,Cartesian coordinate[m] 
𝑦,,Cartesian coordinate[m] 
𝑧, Cylindrical coordinate in axial direction  [m] 
𝑇∗, Reduced temperature difference (dimensionless) 

⍺,Thermal diffusivity[m2. s−1] 
𝛽𝐶 , Mass expansion coefficient  

𝛽𝑇, Thermal expansion coefficient [K−1] 
𝛿𝑇, Reference temperature difference [K] 
𝜆,Thermal conductivity[W.m−1. K−1] 
𝜇, Dynamic viscosity  [Pa. s] 
𝜈,Kinematic viscosity [m2. s−1] 

𝜌, , Fluid density fluide [kg.m−3] 
𝜌𝑖,Density of species (i) in the mixture [kg.m−3] 
𝜓,Current function [m2. s−1] 

𝜔, Vorticity  [s−1] 
𝜂, Elliptical coordinate 

𝜃, Elliptical coordinate 

𝜂𝑝, Component of η on the exterior wall   

𝐺𝑟𝑚,Mass Grashof number 𝐺𝑟𝑚 =
𝑔.𝛽𝑐.𝐿

3.𝛿𝐶

(𝜐0)2
 

𝐺𝑟𝑡 ,Thermal Grashof number 𝐺𝑟𝑡 =
𝑔.𝛽𝑇.𝐿3.𝛿𝑇

(𝜐0)2
 

𝑃𝑒𝑚 , Mass Péclet number 𝑃𝑒𝑚 =
𝑣𝑟.𝐿

𝐷0
  

𝑃𝑒𝑡,Thermal Péclet number 𝑃𝑒𝑡 =
𝑣𝑟.𝐿

𝛼0
  

𝑃𝑟, Prandtl number 𝑃𝑟 =
𝜐0

𝛼0
, 

𝑅𝑎𝑚 , Mass Rayleigh number  𝑅𝑎𝑚 = 𝐺𝑟𝑚 . 𝑃𝑟 =  
𝑔𝛽𝑇𝐿3𝛿𝐶

𝛼0.𝜐
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𝑅𝑎𝑇 , Thermal Rayleigh number 𝑅𝑎𝑇 = 𝐺𝑟𝑡 . 𝑃𝑟 =  
𝑔𝛽𝑇𝐿3𝛿𝑇

𝛼0.𝜐
  

𝑅𝑒, Reynolds number𝑅𝑒 =
𝑣𝑟8.𝐿.𝜌0

𝜇0
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