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ABSTRACT 

In this work, the governing equations for the one-dimensional disk thermoelasticity model were formulated, in 

the context of five different theories of thermoelasticity. The thermoelastic response of the disc under axial 

thermal shock loading was studied. These governing equations are solved to obtain general solutions using the 

boundary conditions for stress and heat flow. The Laplace transform method is used to obtain analytical solutions 

in the transformation field. The inverse of the transformation can be determined numerically for the temperature, 

thermal stress, and displacement distributions. These solutions are represented graphically and discussed for 

several cases of the applied heating. 
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____________________________________________________________________________________ 
 

INTRODUCTION 

Coupled thermoelasticity is a field of study that combines the principles of thermodynamics and elasticity to 

describe the behavior of materials under the influence of both thermal and mechanical loads. In this coupled 

phenomenon, the thermal and mechanical effects interact with each other, leading to complex material behavior. 

Biot [1] developed the classical coupled dynamical theory of thermoelasticity with parabolic field equations. 

Generalized thermoelasticity is a field that extends the classical theory of thermoelasticity to account for more 

complex and realistic phenomena. Lord and Shulman [2] formulated the theory of generalized thermoelasticity with 

one relaxation time. Much research has provided an explanation and application of this theory. Bagri and Eslami [3] 

investigated a one-dimensional generalized thermoelasticity model of a disk under the Lord–Shulman theory. Yong 

and other [4] discussed Thermo-mechanical of multi-layered media based on the Lord-Shulman theory. Hadi and 

other [5] studied dynamical crack propagation under generalized thermal shock based on Lord-Shulman theory. 

Othman and Mondal [6] investigated memory-dependent derivative effect on two dimensional problem of 

generalized thermoelastic rotating medium with Lord–Shulman theory. Papers [7-10] provide applications to Lord–

Shulman theory. Green and Lindsay theory [11] which is known as the theory of generalized thermoelasticity with 

two relaxation times. Khader and other [12] used Green and Lindsay theory to discussed Heat transient response in 

the surfaces of an infinitely long annular cylinder with internal heat source. Ezzat [13] introduced the fundamental 

solution in thermoelasticity with two relaxation times for cylindrical regions. Othmann [14] investigated the effect 

of rotation on plane waves in generalized thermo-elasticity with two relaxation times Papers [15-17] provide 

applications to Green and Lindsay theory. Green and Nagdi [18] developed the theory of thermoelasticity without 

energy dissipation. These theories use hyperbolic field equations to describe heat as a wave. Abd El-Latief and 

Khader [19] introduced the Exact Solution of Thermoelastic Problem for a 1 D Bar without Energy Dissipation. 

Khedr and Khader [20] solved a problem in thermoelasticity with and without energy dissipation. Yadav and other 

[21] studied the thermo dynamical interactions in a non local initially stressed fiber-reinforced thermoelastic 

medium with micro temperatures under GN-II theory. Papers [22-25] provide applications to GN-II model. Tzou 

[26] proposed a universal constitutive equation between the heat flux vector and the temperature gradient to cover 

the fundamental behaviors of propagation, wave, phonon-electron interactions, and pure phonon scattering. Barak 

and other [27] investigated the energy analysis at the boundary interface of elastic and piezo thermo elastic half-

spaces. Abouelregaland other [28] studied the influence of a non-local Moore–Gibson–Thompson heat transfer 
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model. El-Nabulsi and Anukool [29] discussed fractal non local thermo elasticity of thin elastic nano-beam with 

apparent negative thermal conductivity. Many researches [30-32] have provided applications to the theory of 

generalized thermoelasticity. 

 

MATHEMATICAL EQUATIONS 

The linear equations of an isotropic and homogeneous one-dimensional disk in the context of five different theories 

are: 

 
Figure 1: Schematic and geometry of the annular disk 
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where ( ) t 23 +=  

Equations (2) and (3), can be expressed by the five different theories as follows: 

I - Coupled thermoelastcity 

We put 1,0 *
1010 ===== nn , the equations (1, 2, and 4), can be written as 
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II - Lord-Shulman (L-S) theory 

We put 1,0,0 0
*
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III - Green-Lindsay (G-L) theory 
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We put 0,1,0,0 0
*

1001 ==== nnn , the equations (1, 2, and 4), can be written as 

ijjiijj
i T

t
uu

t

u
,0,,2

2

1)( 











+−++=




  

t

u
T

t

T

t
CKT

ii
Eii




+
















+=

,
00, 1   

ijijij eT
t

e  21 0 +



















+−=  

IV - Green-Naghdi type II (G-N-II) theory 

We put 1,0,0,1,0 0
*

1001 ===== nnn , the equations (1, 2, and 4), can be written as 
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V - Chandrasekharaiah and Tzou (C-T) theory 

We put 1,0,0,0 0
*

1001 ==== nnn , the equations (1, 2, and 4), can be written as 
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METHOD AND SOLUTION 

Consider a hollow disk under axisymmetric thermal shock load applied into its inner or outer radii. The inner radii 

occupy the region ar 0 . The outer radii occupy the region br 0 . 

The mechanical and thermal boundary conditions, takes the form 
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The general equations can be written as 
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The equations (7) – (10), in non-dimensional form become 
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SOLUTION PROBLEM IN THE LAPLACE TRANSFORM DOMAIN LAPLCE TRANSFORM 

Applying the Laplace transform with parameter s, to both sides of equations (15)-(18), we obtain 
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Eliminating  from Eq. (19) and (20), we get 
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Applying the Laplace transform, to both sides of equations (6) 
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Substituting equations (25), (27), and (28) into equations (30, and 31), we obtain the linear system of equations with 

unknown four constant 
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Solve this system of linear equations to find 2121 ,,, BandBAA  

 

NOMENCLATURE 

n*              parameter in Green-Nagdhi theory 

k          thermal conductivity 

n1,n0    parameters 

H(t)     Heaviside unit step function 

μ0        magnetic permeability 

K0 ,I0   modified Bessel function 

τ0, υ0    the relaxation times 

αt         coefficient of thermal expansion 

eij        components of the linear strain tensor 

cE       specific heat at constant strain 

u         displacement vector 

λ, μ     Lamé’s modulii 

T        absolute temperature 

Ρ        density 

T0       reference temperature 

 

INVERSION THE LAPLACE TRANSFORMS 

To invert the Laplace transforms, we used the method as in [12] and [33] 
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NUMERICAL RESULTS AND DISCUSSION 

For the purposes of numerical evaluations, the material of the disk is assumed to be aluminum [31] 

)kg/(ms1068.2)kg/(ms104.7K) W/(m042

K10418.8K) J/(kg968kg/m7071K239

210210

-153
0



 −

=μ,=λ,=k

,=α,=c,=,=T tE
 

We have taken the inner radii 1=a and the outer radii 2=b , )13(1232)( tCostf += , and the Heaviside unit step 

function that is 1)( =tH for 0t and 0)( =tH for 0t . 

The figure (2-4), represents the temperature, displacement, and stresses distribution for the first case. 

 The figure (5-7), represents the temperature, displacement, and stresses distribution for the second case. 

In figure (2), the non-dimension temperature is start with the maximum value and decrease. The wave front of 

thermal wave is )(16.1),.(46.1),.(65.1),.(65.1),.(06.1 TzourNGrLGrSLrTCr ===== . 

In figure (3), the non-dimension displacement is start from zero and increasing until to reach the maximum value, 

then it decreasing. In figure (4), the non-dimension stresses in the beginning namely constant and then decreasing 

rapidly. From the figure (2, 3, 4), we show that the beaver of the temperature, displacement, and stresses are the 

same for (C.T and Tzou), and same for (L.s, G.l, and G.N)   
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In figure (5), the non-dimension temperature is start with value one, then decreasing, the thermal wave from are ( 

)(32.1),.(76.1),.(64.1),.(64.1),.(02.1 TzourNGrLGrSLrTCr =====  . in figure (6), the non-dimension 

displacement is started from maximum value, ten decreasing sharply until to reach the certain value to change the 

direction. In figure (7), the non-dimension stresses is start from zero and increasing until to reach the cretin value, 

then change the direction (discontinuity) 
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CONCLUSION 

The five different theories of generalized thermoelasticity of a hollow is studied in this paper for two different 

cases. Distributions of temperature, displacement, and radial stresses at certain time and along the radius of the disk 

are obtained and shown in the figures. In the case of L.S, G.L, and G.N II theory, the solution to all functions is 

limited to a finite region of space and does not extend to infinity. But in the case of C.T and Tzou theory, where the 

solution extends to infinity instantaneously, which indicates an infinite speed of wave propagation. The difference 

between the predictions of the theories of LS, G.L and GN is most apparent in the graphs of the temperature 

distribution (5). In the LS and G.L theories the temperature decreases monotonically signifying continuous 

dissipation of heat energy. This is not the case for GN theory. 
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