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ABSTRACT 

This work contributes to the numerical study of laminar natural convection of an electrically conductive 

Newtonian fluid subjected to a uniform oblique magnetic field. The study focuses on a hemispherical cavity 

bounded by two vertically eccentric hemispheres. The inner hemisphere is subjected to a constant heat flux while 

the outer hemisphere is maintained at a fixed temperature. Thermal and electrical boundary conditions are 

combined to determine the critical values of parameters indicating the onset of instability. The Boussinesq 

approximation is used to analyze the equations governing this fluid instability. These equations are projected onto 

the bispherical coordinate system and discretized using the finite difference method, allowing for the 

development of a FORTRAN code. Using this code, growth rates are calculated for different values of the 

Rayleigh number (ranging from 103 to 107), Hartmann number (0.01), eccentricity (0.2), the ratio of radii (2), 

and the inclination angle of the magnetic field. The study demonstrates that the Rayleigh number has a significant 

impact on the magnetoconvection of a Newtonian fluid confined between two vertically eccentric hemispheres by 

regulating the intensity and complexity of convective movements in the fluid. 
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INTRODUCTION 

The physical phenomenon that describes the convective movement of an electrically conductive fluid subjected 

simultaneously to convection and magnetic forces, commonly known as magnetoconvection, has been extensively 

studied in recent decades [1]. The significance of this phenomenon lies in its relevance to numerous applications in 

various research fields [2], such as astrophysics, geophysics, engineering, and metallurgy. It is also used to study 

phenomena such as solar flares, ocean currents, and nuclear fusion processes [3]. Alongside the issues of pure 

natural convection, various experimental and numerical approaches to magnetoconvection of a fluid confined in 

enclosures have been addressed [4]. In these studies, the enclosure configurations are typically varied and can 

sometimes be parallelepipedal [5, 6], cylindrical [7, 8], or even spherical [9, 10, 11, 12]. These studies have 

proposed correlations between the Nusselt and Rayleigh numbers, which are influenced by wall geometry, fluid 

viscosity, and flow stability [13, 14]. Modeling a magnetoconvection problem proves that the discretization method, 

as well as grid refinement and stretching, stabilize the primary convection roll, and the horizontal magnetic field 

also results in higher kinetic energy and heat transfer rates compared to a non-magnetic case [6]. Another study 

analyzed the Hall effects on magnetoconvective instability and heat transfer, showing that Hall currents reduce the 

flow field [15]. Research has also been conducted to understand the characteristics of flow and heat transfer in an 

enclosure in the presence of a magnetic field, showing that the magnetic field decreases the heat transfer rate [16, 

17]. Another aspect studied by [18] is mixed convection, with an exponential temperature distribution in the 

presence of a magnetic field and internal thermal and viscous dissipation. The results showed that an increase in the 

Prandtl number decreases the skin friction coefficient, while an increase in the magnetic field enhances the local 

Nusselt number. A study by [9] examined the natural convection of a non-conductive Newtonian fluid between two 

vertically eccentric spheres, showing that an increase in the modified Rayleigh number allows reaching a steady 



Sarr F                                                                       Euro. J. Adv. Engg. Tech., 2024, 11(6):1-10 

 

2 

 

 

state more quickly and that the influence of eccentricity is weak. The convection motion is strengthened for positive 

eccentricities, and the heat exchange increases with the modified Rayleigh number. [19] also studied the case of a 

hemisphere, showing that the vortex center moves upward for higher eccentricities, and the Nusselt number 

increases with the modified Rayleigh number. A study proposed by [20] focuses on the thermal convection of an 

electrically conductive fluid subjected to a magnetic field. Such abundant literature gives significant importance and 

scientific scope to the study of heat transfer. In fact, this motivated the initiation of the present study. It concerns 

natural convection between two vertically eccentric hemispheres of a conducting fluid subjected to a magnetic field. 

The aim is to study, for a transient flow regime, the magnetoconvection of a Newtonian fluid subjected to an 

oblique magnetic field and confined between two vertically eccentric hemispheres. To do this, a constant heat flux 

is imposed on the inner hemisphere while the outer hemisphere is maintained at a constant temperature. The main 

objective is, on the one hand, to determine the influence of the Rayleigh number on the isotherms and streamlines, 

and on the other hand, its influence on the Nusselt number, the stream function, and the temperature. 

 

PROBLEM FORMULATION 

The diagram shown in Figure 1 illustrates the displacement of a conducting fluid (moist air), which is a Newtonian 

fluid, subjected to an oblique magnetic field. This fluid is confined in an annular space bounded by two vertically 

eccentric hemispheres. The radii of the inner and outer hemispheres are denoted Ri and Re, respectively. The 

distance between the centers of these two hemispheres is defined by the eccentricity e'. Initially, the temperature 

inside and on the walls of the enclosure is uniform. A constant heat source (q') is applied to the inner hemisphere, 

while the temperature of the outer hemisphere remains constant (T'). The walls separating the two hemispheres at 

angles θ = 0 and θ = π are adiabatic. 

 

 
Fig. 1: Problem geometry 

 

A transient natural convection of the conductive fluid will develop within this space due to the temperature 

difference between the two hemispheres. The physical properties of the fluid remain constant, except for its density, 

which varies linearly with temperature and follows Boussinesq's law in the equation of motion. Fluid flow is 

laminar, incompressible and two-dimensional, and the magnetic field is assumed to be constant with neglect of the 

induced field. We also neglect the viscous dissipation function, radiative effects and the pressure term. The 

boundaries of the system under study are electrically insulating. The walls of our enclosure are made up of two 

spherical parts and two others offset from the vertical. To simplify the boundary conditions, it is necessary to use a 

curvilinear coordinate system in which the boundaries of our domain are parametrized by constant coordinate lines. 

Thus, given the geometry of the enclosure, the most appropriate coordinate system is that of bispherical coordinates. 

In the case of two-dimensional flow, relationship (1) allows us to pass from Cartesian coordinates (x, y) to 

bispherical coordinates: 

{

𝑥 =
𝑎 sin 𝜃 

𝑐ℎ𝜂−𝑐𝑜𝑠𝜃
 

 

𝑦 =
𝑎 𝑠ℎ𝜂

𝑐ℎ𝜂−𝑐𝑜𝑠𝜃

                                      (1) 
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Along the vertical are two walls identified by θ = 0 and θ = π. The two inner and outer hemispheres are respectively 

materialized by the coordinate lines h=hi and h=hi. 

 

BASIC EQUATIONS 

After introducing the simplifying assumptions, we establish the various dimensionless equations necessary for 

solving the problem considered in this study. The vorticity-flux functions (vortical flow) are represented by the 

momentum and heat equations, which are expressed by the relation (2): 

𝜕𝑡𝐹 + 𝐴(𝑈)𝜕𝜂𝐹 + 𝐵(𝑉)𝜕𝜃𝐹 = 𝑃(𝜕𝜂
2𝐹 + 𝜕𝜃

2𝐹) + 𝑆(𝐺2𝜕𝜂𝑇 − 𝐺1𝜕𝜃𝑇 ) + 𝑅(𝜕𝜂𝐵1 − 𝜕𝜃𝐵2)      (2) 

The different values of the variables F, A, B, P, S and G are given in Table 1. 

 

Table 1: Variables in the heat and vorticity equation 

Equation 𝑭 A(U) B(V) P S R 

Heat 𝑇 1

𝐻
[𝑈 −

𝐺2

𝐾
] 

1

𝐻
[𝑉 +

𝐺1

𝐾
] 

1

𝐻2
 

0 0 

Movement Ω

𝐾
 

1

𝐻
[𝑈 −

3𝑃𝑟𝐺2

𝐾
] 

1

𝐻
[𝑉 +

3𝑃𝑟𝐺1

𝐾
] 

𝑃𝑟

𝐻2
 

𝑅𝑎. 𝑃𝑟

𝐾𝐻
 

𝐻𝑎2 . 𝑃𝑟

𝐾𝐻2
 

 

With:  

{
𝐵1 = 𝐻(𝑈𝐵𝜂𝐵𝜃 − 𝑉𝐵𝜂

2)

𝐵2 = 𝐻 (𝑉𝐵𝜂𝐵𝜃 − 𝑈𝐵𝜃
2)

            (3) 

{
𝐵𝜂 =

𝐵𝜂
∗

𝐵0
= 𝐺2 𝑐𝑜𝑠𝜑 + 𝐺1 𝑠𝑖𝑛𝜑

𝐵𝜃 =
𝐵𝜂

∗

𝐵0
= 𝐺2 𝑠𝑖𝑛𝜑 − 𝐺1 𝑐𝑜𝑠𝜑

         (4) 

Where the quantities U, V, G1, G2, K, H, are defined by equations (5), (6) and (7). 

{
𝑈 =

1

𝐻𝐾
 𝜕𝜃Ψ

𝑉 = −
1

𝐻𝐾
 𝜕𝜂Ψ

           (5) 

{

G1 =
1−cosθchη

chη−cosθ
 

 

G2 = −
sinθshη

chη−cosθ

           (6) 

{

𝐾 =
𝑎𝑠𝑖𝑛𝜃

𝐷(𝑐ℎ𝜂−𝑐𝑜𝑠𝜃)
 

 

𝐻 =
𝑎

𝐷(𝑐ℎ𝜂−𝑐𝑜𝑠𝜃)

          (7) 

The condition of incompressibility is satisfied by the equation of the stream function given by relation (8): 

Ω = −
1

𝐾2𝐻
(𝐺2𝜕𝜂Ψ − 𝐺1𝜕𝜃Ψ) −

1

𝐾𝐻2 (𝜕𝜂
2Ψ + 𝜕𝜃

2Ψ)       (8) 

In addition to these various equations, there are boundary conditions and initial conditions.  At t = 0, the conditions 

are expressed by the relation (9): 

Ω=Ψ=T=U=V=0              (9) 

At t > 0, the boundary conditions are expressed by equations (10), (11), and (12) depending on the location of the 

wall.  

• On the inner spherical wall (η = ηi) 

𝛹 = 𝑈 = 𝑉 = 0, 𝜕𝜂𝑇 = 𝐻𝑖 =
𝑐ℎ𝜂𝑖

𝑠ℎ2𝜂𝑖
 and 𝛺 = −

1

𝐾𝐻
𝜕𝜂

2𝛹         (10) 

• On the outer spherical wall (η=ηe) 

Ψ = 𝑈 = 𝑉 = 𝑇 = 0  and Ω = −
1

𝐾𝐻
𝜕𝜂

2Ψ          (11) 

• On both vertical walls (θ = 0, θ = π)  

Ψ = 𝑈 = 𝑉 = ∂𝜂𝑇 = 0 and Ω = −
1

𝐾𝐻
𝜕𝜃

2Ψ          (12) 

The Nusselt number reflects the thermal energy transmitted by a spherical wall. The local Nusselt numbers, Nu, and 

the mean Nusselt number are defined by relations (13) and (14) depending on the wall.  

For the inner spherical wall: 

𝑁𝑢𝑖 =
1

𝑇𝑖,𝑚
             (13) 

For the outer spherical wall:  

𝑁𝑢𝑒 =
1

𝐻𝑒𝑇𝑖,𝑚
𝜕𝜂𝑇            (14) 
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NUMERICAL METHOD 

The transfer equations that govern our problem are non-linear and coupled partial differential equations. Due to 

their complexity, these equations are solved using numerical techniques. For the development of a numerical code 

simulating the magnetoconvection of a Newtonian fluid confined in an annular space, we used: 

- The Alternating Direction Implicit (ADI) method for the temporal solution of the momentum and heat 

equations; 

- The finite difference method for spatial integration. 

We will use the Thomas algorithm to solve the system of linear equations obtained by the ADI method. However, 

for the flow function equation, the resolution is based on the successive over-relaxation (SOR) method with an 

optimal relaxation parameter. At the iterative loop level, the calculated result Znew of a quantity to be determined 

will only be considered as a convergent solution if it obeys the following relation (15) with the old value Zold: 
|Znew−Zold|max

|Znew|
 ≤ 10−5           (15) 

Steady state is reached only if this relative error between two consecutive time steps for all quantities obeys relation 

(16): 
|Zn+1−Zn|

max

|Zn+1|max
≤ 10−5           (16) 

Zn represents Ω, Ψ or T for the nth time step. 

 

RESULTS AND DISCUSSIONS 

In this section, we will examine the results and discussions arising from a comprehensive numerical study on the 

magnetoconvection of a Newtonian fluid subjected to various Rayleigh numbers.  

 

CALCULATION CONDITIONS  

The choice of a 51 x 51 mesh grid and a time step of 10-4 is motivated by tests conducted on their influence. The 

results of these tests are presented in tables 2 and 3 and prove that these choices represent, among other things, a 

good compromise.  

Table 2: Effects of time steps on the Nusselt number of the thermal wall for Ha=1, Ra=105, e=0, ∆t=10-4 and the 

grid system is 51x51 

 Time steps 

10-3 10-4 10-5 

Nu 4.7337 4.7298 4.7296 

Difference (%) 0.087 0.004 0 

Time computing (min) 5 124 802 

 

Table 3: Effects of mesh refinement on the Nusselt number of the thermal wall forHa=1, Ra=105, e=0 and ∆t=10-4 

 Mesh grid 

21*21 21*41 41*41 41*51 41*81 51*51 51*81 81*81 

Nu 4.8750 4.8871 4.7515 4.7503 4.7502 4.7298 4.7297 4.7060 

Difference (%) 3.59 3.85 0.97 0.94 0.94 0.51 0.50 0 

Time computing (min) 9 97 225 261 362 348 447 604 

 

VALIDATION 

When there is no magnetic field, the problem becomes one of natural laminar convection. The values of the mean 

Nusselt number are given in Table 4 for different Rayleigh numbers. We have compared these results with those of 

the study [19] on transient laminar convection between two vertically eccentric hemispheres. These comparisons 

show a relative difference of 02.72% for all cases studied, indicating excellent agreement between the results. 

 

Table 4: Comparison of the average Nusselt number for e = 0 

 Ra 

103 104 105 106 107 

Nusselt number (our results) 2.0673 3.0379 4.8920 7.7680 11.708 

Nusselt number (results of [19]) 2.125 3.0651 4.982 7.6874 11.671 

Difference (%) 2.72 0.89 1.81 1.05 0.32 

 

INFLUENCE OF THE RAYLEIGH NUMBER 

To study the influence of the Rayleigh number on magnetoconvection, we will set the value of the eccentricity to; 

the Hartmann number Ha=0.01, and the inclination angle of the magnetic field. 

Through figures 2, 3, 4, 5, and 6, we have presented the temporal evolution of the isotherms on the right and the 

streamlines on the left for different Rayleigh numbers ranging from 103 to 107. 
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For the Rayleigh number Ra=103, according to figure 2, the fluid circulates weakly. The isotherms are highly 

concentrated and circular in shape, following the inner spherical wall of the container. There is also a decrease in 

temperature from the hot spherical wall towards the cold wall. Over time, the evolution and parallelism of the 

isotherms decrease, indicating a pseudo-conductive regime. 

When the Rayleigh number is 104 (figure 3), heat transfer through magnetic convection predominates over thermal 

conduction. This predominance of convection is manifested by the widening of the isotherm lines, as the 

temperature becomes more uniform as we move away from the hot spherical wall. The displacement of fluid 

particles is more significant in the upper part of the container due to the buoyancy opposing the gravitational force. 

The isotherms deform further in figures 4 and 5, indicating a significant presence of the radiative effect for Rayleigh 

numbers Ra=105 and Ra=106. 

For Ra=107, the isotherms in figure 6 show more pronounced temperature gradients, making them more complex 

with areas of higher temperature associated with convection movements. The regime becomes pre-turbulent. 

In general, we observe an upward movement of fluid particles that heat up near the hot inner spherical wall. Under 

the effect of buoyancy, they move upward along this wall, then descend near the cold outer spherical wall. This 

downward movement of particles creates a region of low velocity between these two wall-adjacent regions. 

Regarding the streamlines, for Ra=103, the rotation center of the vortex moves slightly away from the heated inner 

spherical wall, as shown in figure 2. However, for Ra=104 and Ra=105, convection sets in and the rotation center 

rises higher above the inner spherical wall, approaching the outer wall, as shown in figures 3 and 4. These 

phenomena are due to the appearance of fluid movements, as the absolute value of the minimum of the stream 

function increases. 

For Ra=106, convection becomes more significant, and figure 3 shows deformation of the vortex. Heated particles 

rise due to buoyancy, then cool down as they approach the hot outer spherical wall and descend under the effect of 

gravity. 

In conclusion, for all values of the Rayleigh number, we observe a fluid movement from the heated inner spherical 

wall towards the hot outer wall of the container, opposing gravity. This phenomenon intensifies with increasing 

Rayleigh number. 

Figure 6 clearly shows that for a Rayleigh number Ra=107, convection currents develop further and become more 

dynamic, with more complex and sinuous streamlines, forming vortex structures. 

 

 
Fig. 2: Current lines and isotherms for Ra=103; e=0.2; Ha=0.01; φ=π/6 
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Fig. 3: Current lines and isotherms for Ra=104; e = 0.2; Ha=0.01; φ=π/6 

 

 
Fig. 4: Current lines and isotherms for Ra = 105; e = 0.2; Ha = 0.01; φ = π/6 
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Fig. 5: Current lines and isotherms for Ra = 106; e = 0.2; Ha = 0.01; φ = π/6 

 

 
Fig. 6: Current lines and isotherms for Ra = 107; e = 0.2; Ha = 0.01; φ = π/6 
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MINIMUM CURRENT FUNCTION, NUSSELT NUMBER AND HEATED WALL TEMPERATURE 

The curves in the graph 7 below illustrate the evolution, as a function of time, of the average Nusselt number on the 

heated inner wall, the average temperature of this wall, and the minimum stream function, for Rayleigh number 

values ranging from 103 to 107. 

The evolution of the dimensionless average Nusselt number on the inner hemisphere with respect to time 

demonstrates a decrease followed by a monotonic phase. The increase in the Rayleigh number indicates an increase 

in convection and therefore an increased heat transfer, resulting in an increase in the Nusselt number. 

The evolution of the dimensionless average temperature of the inner wall, for Rayleigh numbers ranging from 103 

to 107, shows a temporal growth before stabilizing at a certain point. When the Rayleigh number is low (Ra=103), 

the temperature of the heated wall remains relatively constant and does not show significant variations. However, 

when the Rayleigh number increases beyond a critical value, i.e., starting from 104, the average temperature of the 

wall also increases. 

For the same Rayleigh numbers, the evolution of the minimum stream function decreases rapidly with respect to 

dimensionless time, then stabilizes once the steady state is reached. This decrease is more pronounced for higher 

values of the Rayleigh number. If the Rayleigh number takes values of 105 and 106, the curves exhibit peaks before 

stabilizing. On the other hand, for a Rayleigh number equal to 107, the minimum stream function exhibits two peaks 

but struggles to stabilize: this is the pre-turbulent regime. The explanation for this phenomenon is that, initially, 

thanks to the initial conditions and system boundaries, magnetic convection predominates, leading to significant 

fluid movement. Once the steady state is reached, these magnetoconvective phenomena attenuate. 

   

 
Fig. 7: Influence of Rayleigh number on various parameters 
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CONCLUSION 

In this article, we conducted a numerical study of magnetoconvection in a fluid confined between two eccentric 

hemispheres. We subjected the hemispherical cavity to thermal and electrical boundary conditions to determine the 

critical values of parameters that mark the onset of instability. To do this, we imposed a constant heat flux density 

on the inner hemispherical wall and a constant temperature on the outer hemisphere. The equations governing 

magnetoconvection were projected into bispherical coordinates. After dimensionless scaling of our equations, 

spatial discretization was performed using finite difference methods. For temporal discretization, the equations were 

solved using the ADI and SOR methods. 

For very weak magnetic fields, magnetoconvection simplifies into a natural convection problem. The results of our 

study are consistent and significant: 

- For a Rayleigh number (Ra) equal to 103, which characterizes the conductive regime, and a low Hartmann 

number, the isotherms resemble eccentric circles following the inner hemispherical wall. When the Rayleigh 

number increases to Ra=104, Ra=105, and up to Ra=106, magnetoconvection becomes increasingly dominant. This 

dominance is manifested by a very pronounced deformation of the isotherms. 

- The Rayleigh number also influences the Nusselt number, the minimum and maximum stream function values, 

and the temperature of the heated wall in a magnetoconvection problem. As Ra increases, heat transfer through 

convection becomes more efficient, currents become stronger, and the temperature of the heated wall decreases. 
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NOMENCLATURE 

a: torus pole parameter (m) 

e: eccentricity  

g: intensity of gravity (m.s-2) 

G1 and G2: coefficients  

H and K: dimensionless metric coefficients  

B0: magnetic field strength (N.A-1.m-2) 

Ha, Hartmann number 

Nue, Nusselt number for the outer hemisphere 

Nui, Nusselt number for inner hemisphere 

Oi and Oe respectively center of inner and outer hemisphere 

Pr, Prandtl number  

q, heat flux density (W.m-2) 

Ri and Re, radii of the inner and outer hemispheres respectively 

Ra, Rayleigh number 

t, dimensionless time 

t', dimensional time (s) 

T, dimensionless temperature 

U and V, dimensionless velocity components in transformed planes 

x and y, Cartesian coordinates, (m) 

α, thermal diffusivity, (m².s-1) 

β, coefficient of thermal expansion, (K-1) 

σ, electrical conductivity, (A.m.V-1) 

Δt, time step, (s) 

ΔT, temperature difference between the two hemispheres, (K) 

η and θ, bispherical coordinates, (m) 

λ, thermal conductivity, (W.K-1.m-1) 

ν, kinematic viscosity, (m3.s-1) 

Ψ, dimensionless flux function, 

Ψ′, dimensional flow function, (m3.s-1) 

Ω, dimensionless vorticity,  

Ω', dimensional vorticity, (m3.s-2) 
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