
Available online www.ejaet.com 

European Journal of Advances in Engineering and Technology, 2024, 11(3):136-142 

 

Research Article ISSN: 2394 - 658X 

 

 

136 

 

SAP CAPM Tools and Capabilities - Part 1 

 

Deepak Kumar 

 

Wilmington, USA 

Deepak3830@gmail.com 
_____________________________________________________________________________________________

 

ABSTRACT 

The SAP Cloud Application Programming Model (CAPM) is a comprehensive framework for building 

sophisticated, cloud-native applications within the SAP ecosystem. Grounded in domain-driven design (DDD), 

CAP empowers developers to model complex business domains using Core Data Services (CDS). CDS' unified, 

declarative syntax streamlines development by defining entities, relationships, and business logic in one place. 

This approach aligns applications closely with business needs, enabling rapid iteration and adaptation. CAP 

fosters modular, independently deployable services that seamlessly interact with each other and external systems 

through robust API capabilities. Leveraging Node.js for server-side logic, CAP applications excel in scalability, 

responsiveness, and handling asynchronous operations. 

CAP combines proven open-source and SAP technologies. Its infrastructure supports Node.js and Java, offering 

developers flexibility. The Node.js SDK, built on Express, provides a rich ecosystem of libraries. CAP also 

supports Java for enterprises. SAP offers tools for both environments, including SAP Business Application 

Studio and Visual Studio Code. Core Data Services (CDS) is CAP's foundation, modeling both domain models 

and service definitions. CDS models can be deployed to databases like SAP HANA. CAP's service SDKs for 

Node.js and Java enable service implementation and access to SAP Business Technology Platform services like 

authentication and authorization. 

CAP smoothly integrates with the SAP Cloud Platform and SAP S/4HANA enhancing data accessibility, 

security, and implementation. This collaboration maximizes investments and broadens functionalities throughout 

the SAP environment. Prioritizing features, for businesses, adaptability and expandability CAP enables 

companies to develop adaptable scalable applications that fulfill contemporary business needs and foster 

innovation moving forward. 

 

Keywords: SAP CAP, SAP BTP, SAP Fiori, Node.js, Java, SAP S4 HANA 

_____________________________________________________________________________________________ 
 

INTRODUCTION 

SAP Business Technology Platform (BTP) is a cloud-based platform that allows users to develop integrate and 

enhance SAP applications. It provides Platform as a Service (PaaS) features such, as analytics, artificial 

intelligence/machine learning (AI/ML), and Internet of Things (IoT) facilitating development and growth 

opportunities. 

SAP Fiori provides user interfaces, for SAP software. Its user-friendly and adaptable layout boosts efficiency, on 

devices by streamlining business operations.  

Node.js, a JavaScript runtime built on Chrome's V8 engine, excels at scalable, real-time applications. Its non-

blocking I/O and event-driven architecture optimize server-side programming. 

Java is an object-oriented programming language recognized for its adaptability and dedicated user base. It drives 

business applications on platforms. Plays a crucial role, in numerous backend operations. 

SAP HANA is an in-memory database and application platform that accelerates data processing and analytics. 

Offering real-time insights, predictive analytics, spatial processing, and machine learning, it's a core technology for 

modern enterprises. 

 

KEY FEATURES OF SAP CAPM 



Kumar D                                                            Euro. J. Adv. Engg. Tech., 2024, 11(3):136-142 

 

137 

 

 

SAP Cloud Application Programming Model (CAP) is a comprehensive framework designed to accelerate the 

development of modern enterprise applications. Its core features include: 

Data Modeling with Core Data Services (CDS): CAP utilizes CDS for declarative data modeling, defining 

entities, associations, and constraints. This streamlined approach ensures data consistency and simplifies 

maintenance. 

 
Service Definition and API Exposure: CAP empowers developers to create services encapsulating business logic 

and expose them as APIs. This enables seamless integration with frontends, external systems, and microservices 

architectures. 

Business Logic Implementation: Built on Node.js, CAP supports robust business logic implementation through 

custom JavaScript or TypeScript code. This allows for complex workflows, calculations, and event-driven 

processes. 

Deployment and Scalability: Optimized for cloud environments, CAP supports containerized deployment on 

platforms like Cloud Foundry and Kubernetes. This enables scalability, resilience, and efficient resource utilization. 

CI/CD integration streamlines deployment processes. 

By providing a unified platform for data management, service creation, business logic implementation, and 

deployment, CAP empowers organizations to build agile, scalable, and secure applications that meet the demands of 

today's dynamic business landscape. 

 

BENEFITS OF SAP CAPM 

SAP Cloud Application Programming Model (CAP) offers significant advantages that streamline development, 

ensure consistency, and integrate seamlessly with SAP technologies. 

CAP enhances productivity by simplifying complex tasks like data modeling and service definition through its 

declarative Core Data Services (CDS). By eliminating boilerplate code, developers can focus on core business 

logic, accelerating development and reducing errors. CAP provides user-friendly database interfaces without 

sacrificing native capabilities, allowing full utilization of powerful platforms like SAP HANA. 

 

 
 

Furthermore CAP emphasizes the importance of maintaining consistency by following domain driven design 

(DDD) principles and standardized patterns. This approach guarantees that data structures, service definitions and 



Kumar D                                                            Euro. J. Adv. Engg. Tech., 2024, 11(3):136-142 

 

138 

 

 

APIs remain consistent across modules and projects which ultimately enhances the quality of code its 

maintainability and promotes collaboration, within the team. 

Moreover CAP seamlessly integrates with SAP Cloud Platform and SAP S/4HANA allowing organizations to make 

the most out of their existing investments. By enabling integration with SAP services and extending SAP 

applications this integration streamlines data synchronization processes. Aligns well with enterprise IT strategies. 

This in turn supports the development of applications that meet enterprise grade standards. 

Additionally CAP offers flexibility by supporting deployments on Cloud Foundry and Kubernetes platforms. This 

flexibility enables applications to easily scale up or down based on evolving business needs. Alongside extensibility 

options CAP provides a framework that caters to a variety of enterprise requirements while ensuring stability and 

high performance. 

These attributes position SAP CAP as a choice, for organizations looking to develop scalable applications that are 

closely aligned with their business objectives and IT infrastructure. 

 

DOMAIN DRIVEN DESIGN 

CAP embraces domain-driven design (DDD), aligning applications with real-world business concepts. By focusing 

on core business domains like customers, orders, and products, CAP applications become more intuitive and 

aligned with stakeholder needs. 

Core Data Services (CDS) facilitates DDD implementation through declarative data modeling. CDS defines 

entities, relationships, and business rules, simplifying development and ensuring consistency. CAP also supports 

bounded contexts, isolating application components for better management and evolution. 

This DDD-centric approach results in applications that are not only technically sound but also closely aligned with 

business objectives. By understanding and modeling the business domain, CAP applications effectively address 

complex requirements and adapt to changing market conditions. 

 

INTRODUCTION TO CORE DATA SERVICES (CDS) 

Core Data Services (CDS) is a language used in SAP applications to define and manage data models. It offers a way 

to describe data structures, connections, and functionalities in an easy-to-understand manner. CDS plays a role, in 

the SAP Cloud Application Programming Model (CAP). Supports various aspects of application development from 

shaping data models to defining services. 

In SAP CAP CDS is widely employed for setting up data models and services providing an approach to 

development. CDS views are instrumental in creating models that support reporting and business intelligence 

applications within the SAP environment. CDS aids in integrating data across SAP systems and external sources 

enabling data federation and harmonization within complex enterprise setups. 

Within CAP CDS serves as the foundation for defining, extending and interacting with data and services. Therefore 

it plays a role in the learning process well. Primarily focusing on data modeling CDS enables developers to outline 

data structures, their interconnections, and other relevant details to offer a view of the underlying data model. Apart, 

from defining data models CDS also allows for service definition. This empowers developers to specify how 

services access and process data within CDS definitions. 

According to CDS explanations CAP has the capability to automatically create components of the application, such, 

as database structures, OData services and even segments of the applications logic. This greatly accelerates the 

development timeline. These tools offer a way to represent data models and service models in a manner. 

 

key features of CDS: 

Declarative Syntax: CDS uses a syntax, to SQL making it easy for developers to define entities, attributes and 

relationships. This approach reduces the need for code. Boosts developer efficiency by offering a clear view of data 

models. 

Domain-Specific Language: In terms of language CDS provides elements tailored for business applications 

allowing developers to articulate intricate business logic directly in the data model. This alignment with business 

terms ensures that the data model accurately mirrors the context and needs. 

Data Modelling: When it comes to data modeling CDS enables developers to create entities with attributes and 

establish relationships between them such as associations and compositions. This feature supports the development 

of organized data models for effective enterprise data organization. 

Service Definition: Beyond data modeling, CDS empowers developers to define services that facilitate CRUD 

operations (Create, Read, Update, Delete) on designated entities. By combining data modeling and service 

definition in one language it simplifies service development. Maintains consistency across different application 

layers. 

Integration with SAP Ecosystem: Moreover CDS seamlessly integrates with SAP technologies, like SAP HANA, 

SAP S/4HANA, and SAP Cloud Platform. This integration helps make data access more efficient and supports 

analytics situations. Allows different SAP applications and services to work together seamlessly. 

 



Kumar D                                                            Euro. J. Adv. Engg. Tech., 2024, 11(3):136-142 

 

139 

 

 

Types of CDS files: 

Entity Data Models (EDM): When it comes to Entity Data Models (EDM) these models define data entities along, 

with their attributes and relationships. These entities essentially represent real world business objects like 

customers, products, or sales orders. By adding metadata annotations we can enrich the entity definitions with 

information such as constraints, UI hints, and semantic annotations enhancing their usability and significance. 

Service Definitions: Service Definitions are all about defining services that enable data operations (Create, Read, 

Update, Delete. CRUD) on entities. These services offer interfaces for interacting with data making it easier to 

integrate and ensure interoperability. They outline how entities can be accessed and manipulated through service 

operations while adhering to service-oriented architecture (SOA) principles for a scalable application design. 

Query Definitions: Moving on to Query Definitions. They define data projections and queries that wrap up data 

selections, aggregations and transformations. CDS views simplify the retrieval and manipulation of data ultimately 

boosting performance and supporting scenarios. 

Behavior Definitions: Behaviour Definitions come into play by specifying aspects like validations, authorizations, 

and actions that govern how entities are accessed and manipulated. These behavioral aspects enforce business rules 

while enhancing data integrity within applications. 

Annotations and Metadata: Lastly Annotations and Metadata play a role by enhancing CDS definitions with 

metadata that describes the characteristics and behavior of entities as well as attributes and relationships. By 

providing meaning to data elements these annotations improve the understanding of data while promoting 

integration, across layers of the application architecture. 

 

Domain models: 

Domain models outline the business elements, their characteristics and how they are interconnected. They define 

the data structures of specific service implementations. These models form the foundation, for storing data in 

databases. Also serves as the framework for services that act as interfaces for accessing data. Service or API models 

describe how external users or front-end applications can interact with interfaces, functions, and endpoints. Services 

are responsible for executing the business logic by processing and converting data based on the definitions in these 

models. They. Present data from databases according to domain model specifications outlined in service/API 

models, enabling systems or applications to engage with the underlying data. 

CDS models are represented using Core Schema Notation (CSN) which is akin, to JSON Schema but offers 

extensive capabilities beyond JSON by capturing comprehensive entity relationship models and extensions. All 

steps involving model processing and compilation operate on CSN objects. CSN-marked designs can be put 

together in end formats like OData/EDM interfaces or storage models, for SQL databases (SQL DDL statements). 

CSN-marked designs can be generated from origins. They can be extracted from or. yaml files. Produced on the fly, 

in code during execution. 

 
In CDS files models are described using CDS Definition Language (CDL) and CDS Query Language (CQL). CDL 

is a way for humans to define models clearly while CQL is, like a version of SQL for writing queries. CAP parses 

the information, in these CDS files into CSN. An instance of a Domain Model created with CDL serves as an 

example. 

 
Understanding Keywords Used with CDS. 

Definition Language: CDL (Definition Language) serves as a syntax, in SAP applications within the SAP Cloud 

Application Programming Model (CAP) to outline data models and services in a user-friendly manner. It simplifies 

the description of entities, relationships, and business logic. 



Kumar D                                                            Euro. J. Adv. Engg. Tech., 2024, 11(3):136-142 

 

140 

 

 

Key Features; Entities and Relationships; CDL enables developers to define entities with attributes and establish 

relationships between them through associations and compositions. 

Annotations; These provide metadata for entities and properties offering details such as constraints or UI hints. 

Service Definition; CDL also supports defining services that allow CRUD operations on entities supporting service-

oriented architectures (SOA) and services in a user-friendly manner. It simplifies the description of entities, 

relationships, and business logic. 

Schema Notation: CSN (Schema Notation) is the format for representing CDS models as JavaScript objects similar 

to JSON Schema. It facilitates the serialization and deserialization of CDS definitions. 

Query Language: CQL (CDS Query Language) expands on the SQL SELECT statement to query data models 

defined in CDS effectively. It includes features tailored for handling CDS elements like associations and 

projections. 

Query Notation: CQN (Core Query Notation) is a format represented as plain JavaScript objects, used to capture 

queries against CDS models. It provides a standardized way to express queries programmatically, facilitating 

dynamic query generation and execution. 

Expressions (CXN): CXN (Core Expression Notation) is used to capture expressions as plain JavaScript objects 

within CDS. It supports defining conditions, calculations, and transformations that can be applied within CDS 

definitions and queries. 

 

Domain entities: 

Domain entities are structured types that contain named and typed elements, representing sets of data within an 

application. These entities act as the building blocks for creating data models in CAP allowing developers to 

structure and handle data efficiently. When transformed into persistence models domain entities usually correspond 

to database tables with each entity outlining a schema that dictates how data is stored and accessed. Domain entities 

support CRUD (Create, Read, Update, Delete) operations enabling applications to carry out data management tasks. 

These operations are. Made accessible through services defined in CDS facilitating integration and interaction, with 

the underlying data. In CDS when entities are defined they are linked to persistence models. Typically database 

tables in databases or collections in NoSQL databases. CDS offers tools to define how entities are stored and 

managed including entity relationships (such as associations and compositions) and constraints (, like keys and 

indexes). 

 
Entity names should be capitalized to distinguish them clearly from other elements in the application. For example, 

Authors instead of authors. Entity names are recommended to be in plural form (e.g., Authors, Products) to reflect 

collections of similar entities. Elements within entities should start with a lowercase letter (e.g., name, description). 

This convention helps maintain consistency and readability within the data model definitions. Entities offer a 

method, for handling and arranging data in applications improving organization and ease of maintenance. By 

following naming guidelines and established methods domain entities encourage uniformity in data representation 

and support reusability throughout sections of the application. Entities enable connectivity, with SAP technologies 

and external systems fostering scalable application growth and data compatibility. 

 

Providing data type to CDS elements: 

 Build in Types in CDS elements: 

 
  



Kumar D                                                            Euro. J. Adv. Engg. Tech., 2024, 11(3):136-142 

 

141 

 

 

Custom types in CDS elements: 

 
 

Most commonly used annotations: 

 

 
 

CONCLUSION 

Core Data Services (CDS), within the SAP environment transforms data modeling by providing a consistent 

language that defines entities, relationships, and annotations. By following conventions like capitalizing entity 

names (for example Authors) and using plural forms for collections CDS ensures a user representation that aligns 

with real-world business entities. This method not simplifies data structures but also seamlessly integrates with SAP 

technologies such as SAP HANA and SAP S/4HANA ensuring strong data management and interoperability across 

enterprise systems. 

In addition to data modeling, CDS enables developers to define services that support CRUD operations on entities 

facilitating service-oriented architectures (SOA) for modular application design. CDS views optimize data retrieval 

improve query performance and enable analytics for deriving actionable insights. This efficient development 

process speeds up the time to market for SAP applications supported by community assistance and comprehensive 

documentation that promotes innovation and best practices. As companies navigate transformation CDS plays a 

role, in constructing adaptive data-focused solutions that enhance operational efficiency and drive strategic growth 

within the SAP ecosystem. 

 

Declarations  

Ethics approval and consent to participate: Not Applicable 

Availability of data and materials: Not Applicable 

Competing interests: Not Applicable 

Funding: Not Applicable 

 

REFERENCES 

[1]. “SAP Cloud Application Programming Model | SAP Community,” pages.community.sap.com. 

https://pages.community.sap.com/topics/cloud-application-programming 

[2]. “Home | capire,” cap.cloud.sap. https://cap.cloud.sap/docs/ 



Kumar D                                                            Euro. J. Adv. Engg. Tech., 2024, 11(3):136-142 

 

142 

 

 

[3]. Daniel7, “Introducing the Cloud Application Programming Model (CAP),” SAP Community, Jun. 05, 2018. 

https://community.sap.com/t5/technology-blogs-by-sap/introducing-the-cloud-application-programming-

model-cap/ba-p/13354172 

[4]. “SAP Cloud Application Programming Model | SAP Community,” pages.community.sap.com. 

https://pages.community.sap.com/topics/cloud-application-programming 

[5]. “SAP CAP: How Does It Help Enterprises in Agile Development?,” www.gemini-us.com, Nov. 09, 2023. 

https://www.gemini-us.com/sap/sap-cap-how-does-it-help-enterprises-in-agile-

development#:~:text=Additional%20Advantages 

[6]. kumarsanjeev, “Part#1. SAP CDS views Demystification,” SAP Community, Oct. 21, 2019. 

https://community.sap.com/t5/enterprise-resource-planning-blogs-by-members/part-1-sap-cds-views-

demystification/ba-p/13399722 

[7]. R. Glushach, “Domain-Driven Design (DDD): A Guide to Building Scalable, High-Performance Systems,” 

Medium, Oct. 07, 2023. https://romanglushach.medium.com/domain-driven-design-ddd-a-guide-to-building-

scalable-high-performance-systems-5314a7fe053c 

[8]. “SAP Help Portal,” help.sap.com. https://help.sap.com/docs/btp/sap-business-technology-

platform/developing-business-applications-using-node-js 

[9]. “SAP Help Portal,” help.sap.com. https://help.sap.com/docs/bas/sap-business-application-studio/what-is-sap-

business-application-studio 

[10]. “SAP HANA Cloud | SAP Community,” pages.community.sap.com. 

https://pages.community.sap.com/topics/hana/cloud 


